Search Results

 

 

2456134Lab-made liposomes contract where Z rings have gathered together and the constriction forces are greatest (arrows). The top picture shows a liposome, and the bottom picture shows fluorescence from Z rings (arrows) inside the same liposome simultaneously.8/20/2020 5:58:21 PM8/20/2020 5:58:21 PMType    Name    Media Type    File Size    Modified Bactdiv_M    Medium 16 KB 6/3/2016 3:11 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx180130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{164D7686-BE0D-459F-9F57-1E2ED31BA325}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3719816This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. The illustration includes a cartoon with four frames and a fifth frame with potential applications. For an explanation and overview of the CRISPR-Cas9 system, see the NIGMS Biomedical Beat blog entry at https://biobeat.nigms.nih.gov/2014/09/field-focus-precision-gene-editing-with-crispr/ and the iBiology video at http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html.8/12/2024 3:52:02 PM8/12/2024 3:52:02 PMType    Name    Media Type    File Size    Modified CRISPR_Illustrations_2015    High 391 KB 2/5/2019 4:10 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx477330https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{8ADE9DDC-DC6D-4823-A1CC-7FF33FC2C0A6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2542405DNA consists of two long, twisted chains made up of nucleotides. Each nucleotide contains one base, one phosphate molecule, and the sugar molecule deoxyribose. The bases in DNA nucleotides are adenine, thymine, cytosine, and guanine. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:49:23 PM3/4/2022 7:49:23 PMType    Name    Media Type    File Size    Modified Nucleotides_with_labels_S    Low 69 KB 8/24/2016 5:05 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx404250https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{D1C5A0E0-9E8D-476E-BB68-F21AA185C7FA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6611864Circadian rhythms are physical, mental, and behavioral changes that follow a 24-hour cycle. Typical circadian rhythms lead to high energy during the middle of the day (10 a.m. to 1 p.m.) and an afternoon slump. At night, circadian rhythms cause the hormone melatonin to rise, making a person sleepy. <Br><Br> Learn more in NIGMS’ circadian rhythms <a href="https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms.aspx">featured topics page</a>. <Br><Br>See <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6612">6612</a> for the Spanish version of this infographic. 1/5/2024 4:54:05 PM1/5/2024 4:54:05 PMType    Name    Media Type    File Size    Modified CR_TeenTimeline_Opt3B_M    Medium 343 KB 2/12/2021 9:29 AM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx490270https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{824D535B-F568-41B6-99E0-0EFFC580F9A2}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
7036460442This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. <Br><Br>Frame 1 shows the two components of the CRISPR system: a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA), and a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence). <Br><Br>In frame 2, the CRISPR machine locates the target DNA sequence once inserted into a cell. <Br><Br>In frame 3, the Cas9 enzyme cuts both strands of the DNA. <Br><Br>Frame 4 shows a repaired DNA strand with new genetic material that researchers can introduce, which the cell automatically incorporates into the gap when it repairs the broken DNA. <Br><Br>For an explanation and overview of the CRISPR-Cas9 system, see the <a href=" http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html">iBiology video</a>. <Br><Br>Download the individual frames: <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6465">Frame 1</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6486">Frame 2</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6487">Frame 3</a>, and <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6488">Frame 4</a>. 8/12/2024 5:01:59 PM8/12/2024 5:01:59 PMType    Name    Media Type    File Size    Modified CRISPR Illustrations_4square_M    Medium 41 KB 8/12/2024 11:35 AM Crowley, Rachel (NIH/NIGMS) [E STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx329410https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E3D6EE3A-9711-4EF5-A6D4-62CC3CF3470B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2748559This ribbon drawing of a protein hand drawn and colored by researcher Jane Richardson in 1981 helped originate the ribbon representation of proteins that is now ubiquitous in molecular graphics. The drawing shows the 3-dimensional structure of the protein triose phosphate isomerase. The green arrows represent the barrel of eight beta strands in this structure and the brown spirals show the protein's eight alpha helices. A black and white version of this drawing originally illustrated a <a href=http://kinemage.biochem.duke.edu/teaching/anatax target="_blank">review article</a> in <i>Advances in Protein Chemistry</i>, volume 34, titled "Anatomy and Taxonomy of Protein Structures." The illustration was selected as Picture of The Day on the English Wikipedia for November 19, 2009. Other important and beautiful images of protein structures by Jane Richardson are available in her <a href=http://commons.wikimedia.org/wiki/User:Dcrjsr/gallery_of_protein_structure target="_blank">Wikimedia gallery</a>.8/18/2020 7:55:11 PM8/18/2020 7:55:11 PMType    Name    Media Type    File Size    Modified TriosePhosphateIsomerase_Ribbon_pastel_photo_mat3_S1    Low 904 KB 6/3/2016 3:16 PM aamishral2 (NIH/NIGMS STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx270150https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{463859B2-279A-4E80-A85C-A2382E815BD5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2569479The human body keeps time with a master clock called the suprachiasmatic nucleus or SCN. Situated inside the brain, it's a tiny sliver of tissue about the size of a grain of rice, located behind the eyes. It sits quite close to the optic nerve, which controls vision, and this means that the SCN "clock" can keep track of day and night. The SCN helps control sleep and maintains our circadian rhythm. See image 2568 for an unlabeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.2/5/2020 4:23:07 PM2/5/2020 4:23:07 PMType    Name    Media Type    File Size    Modified Circadian_Rhythm_with_labels_S    Low 46 KB 9/7/2016 2:56 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx16290https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{15466B22-8CB2-4CEB-BCCC-012EC8207CDA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6803966Groups of <em>Staphylococcus aureus</em> bacteria (blue) attached to a microstructured titanium surface (green) that mimics an orthopedic implant used in joint replacement. The attachment of pre-formed groups of bacteria may lead to infections because the groups can tolerate antibiotics and evade the immune system. This image was captured using a scanning electron microscope. <Br><Br>More information on the research that produced this image can be found in the <em>Antibiotics</em> paper<a href="https://www.mdpi.com/2079-6382/10/8/889"> "Free-floating aggregate and single-cell-initiated biofilms of <em>Staphylococcus aureus</em>" </a>by Gupta et al. <Br><Br> Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6804">6804</a> and video <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6805">6805</a>. 10/18/2023 2:58:27 PM10/18/2023 2:58:27 PMType    Name    Media Type    File Size    Modified SF Aggregates on patterned surfaces-blue_green_M    Medium 65 KB 1/20/2022 1:49 PM Crowley, Rachel (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx258110https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E37D8CD5-D785-4772-AC02-AD968EA3AABF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
1292296The endoplasmic reticulum comes in two types: Rough ER is covered with ribosomes and prepares newly made proteins; smooth ER specializes in making lipids and breaking down toxic molecules. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 7:28:49 PM10/28/2020 7:28:49 PMType    Name    Media Type    File Size    Modified ITC_SER_inset_Copy_S    Low 26 KB 8/10/2016 3:50 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx460170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{14BB84F1-5BDA-4E80-9C7C-799788D69094}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3493598Like a watch wrapped around a wrist, a special enzyme encircles the double helix to repair a broken strand of DNA. Without molecules that can mend such breaks, cells can malfunction, die, or become cancerous. Related to image <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=131">2330</a>. 9/9/2020 2:16:07 AM9/9/2020 2:16:07 AMType    Name    Media Type    File Size    Modified GDB--DNA_unwinding_recolored    Other 11273 KB 9/26/2020 10:40 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx19550https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F2218257-80D3-4C95-A593-3F1D0092301B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3491596A protein called kinesin (blue) is in charge of moving cargo around inside cells and helping them divide. It's powered by biological fuel called ATP (bright yellow) as it scoots along tube-like cellular tracks called microtubules (gray).9/8/2020 11:21:32 PM9/8/2020 11:21:32 PMType    Name    Media Type    File Size    Modified cool_image_kinesin_L    Low 7 KB 6/3/2016 3:30 PM aamishral2 (NIH/NIGMS) [C Would you allow us to do so, and would you please let us know how you would like to STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx18050https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{35B500A0-F314-4453-AED7-2C9A600F10D9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6963978Real-time footage of <em>Caenorhabditis elegans</em>, a tiny roundworm, trapped by a carnivorous fungus, <em>Arthrobotrys dactyloides</em>. This fungus makes ring traps in response to the presence of <em>C. elegans</em>. When a worm enters a ring, the trap rapidly constricts so that the worm cannot move away, and the fungus then consumes the worm. The size of the imaged area is 0.7mm x 0.9mm. <Br><Br> This video was obtained with a polychromatic polarizing microscope (PPM) in white light that shows the polychromatic birefringent image with hue corresponding to the slow axis orientation. More information about PPM can be found in the <em>Scientific Reports</em> paper <a href="https://www.nature.com/articles/srep17340/">“Polychromatic Polarization Microscope: Bringing Colors to a Colorless World”</a> by Shribak. 1/27/2023 9:47:31 PM1/27/2023 9:47:31 PMType    Name    Media Type    File Size    Modified Celegans in Fungus Image    Thumbnail 670 KB 1/27/2023 4:37 PM Bigler, Abbey (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx26450https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{0F0A87C1-A526-4B01-B302-2C04F7127B77}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2553345Arranging exons in different patterns, called alternative splicing, enables cells to make different proteins from a single gene. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:39:29 PM3/4/2022 7:39:29 PMType    Name    Media Type    File Size    Modified Alternative_Splicing_with_labels_S    Low 48 KB 8/25/2016 5:53 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx19050https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{316509E3-8F9C-4A42-B17E-9024C0A51F6D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2412128Crystals of porcine alpha amylase protein created for X-ray crystallography, which can reveal detailed, three-dimensional protein structures.8/6/2020 7:43:47 PM8/6/2020 7:43:47 PMType    Name    Media Type    File Size    Modified f07Q_pig_alpha_amylase1_S    Low 42 KB 9/7/2016 3:41 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx27050https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E9F19A73-FA71-493E-8C7D-9B1B2ADB206F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
1272160The three fibers of the cytoskeleton--microtubules in blue, intermediate filaments in red, and actin in green--play countless roles in the cell. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 4:14:44 PM10/28/2020 4:14:44 PMType    Name    Media Type    File Size    Modified ITC_Cytoskeleton_S    Low 144 KB 8/24/2016 3:18 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx19150https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E37185A4-4561-456C-AC76-3A1F352FA533}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
1092287A whole yeast (<i>Saccharomyces cerevisiae</i>) cell viewed by X-ray microscopy. Inside, the nucleus and a large vacuole (red) are visible.8/27/2020 9:02:59 PM8/27/2020 9:02:59 PMType    Name    Media Type    File Size    Modified Larabell_yeast1.thumb    Thumbnail 5 KB 6/3/2016 2:45 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx16160https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{235B7768-263F-4DC4-A8FB-DA3A0F629CAD}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2307299The fledgling field of X-ray microscopy lets researchers look inside whole cells rapidly frozen to capture their actions at that very moment. Here, a yeast cell buds before dividing into two. Colors show different parts of the cell. Seeing whole cells frozen in time will help scientists observe cells' complex structures and follow how molecules move inside them. Featured in the June 21, 2005, issue of <a href=http://publications.nigms.nih.gov/biobeat/05-06-21/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 12:52:06 PM10/29/2020 12:52:06 PMType    Name    Media Type    File Size    Modified cells_frozen_in_time_L    Low 4 KB 6/3/2016 3:08 PM aamishral2 (NIH/NIGMS) [C Here, a yeast cell buds before STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx14950https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{71D94C18-4C1B-4E16-B859-AACCFD847EC4}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2562545The "epigenetic code" controls gene activity with chemical tags that mark DNA (purple diamonds) and the "tails" of histone proteins (purple triangles). These markings help determine whether genes will be transcribed by RNA polymerase. Genes hidden from access to RNA polymerase are not expressed. See image 2563 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/30/2020 2:54:48 PM10/30/2020 2:54:48 PMType    Name    Media Type    File Size    Modified Epigenetic_Code_S    Low 68 KB 8/24/2016 3:15 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx25760https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{72935939-FFF2-47DA-8E24-55D81622560F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6899883High-resolution time lapse of epithelial (skin) cell migration and wound healing. It shows an image taken every 13 seconds over the course of almost 14 minutes. The images were captured with quantitative orientation-independent differential interference contrast (DIC) microscope (left) and a conventional DIC microscope (right). <Br><Br>More information about the research that produced this video can be found in the <em>Journal of Microscopy</em> paper <a href="https://onlinelibrary.wiley.com/doi/10.1111/jmi.12682/">“An Orientation-Independent DIC Microscope Allows High Resolution Imaging of Epithelial Cell Migration and Wound Healing in a Cnidarian Model”</a> by Malamy and Shribak. 6/30/2022 4:45:48 PM6/30/2022 4:45:48 PMType    Name    Media Type    File Size    Modified circularlamellipodia    High 17708 KB 6/30/2022 3:03 PM Crowley, Rachel (NIH/NIGMS) [E STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx15350https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{497BC427-08F6-402E-B25B-3FF48F096460}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6593901Cell-like compartments that spontaneously emerged from scrambled frog eggs, with nuclei (blue) from frog sperm. Endoplasmic reticulum (red) and microtubules (green) are also visible. Image created using confocal microscopy. <br> <p>For more photos of cell-like compartments from frog eggs view: <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6584">6584</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6585">6585</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6586">6586</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6591">6591</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6592">6592</a>.</p> <p>For videos of cell-like compartments from frog eggs view:&nbsp;<a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6587">6587</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6588">6588</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6589">6589</a>, and <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6590">6590</a>.</p>9/13/2020 3:39:51 PM9/13/2020 3:39:51 PMType    Name    Media Type    File Size    Modified img6_cheng_confocal_nuc_t76_M    Medium 62 KB 9/15/2020 10:04 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx17050https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{552FC5C2-8EFE-4A87-9B6E-FE57AED81528}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2345310Structure of a magnesium transporter protein from an antibiotic-resistant bacterium (<i>Enterococcus faecalis</i>) found in the human gut. Featured as one of the June 2007 Protein Sructure Initiative Structures of the Month.10/29/2020 2:58:36 PM10/29/2020 2:58:36 PMType    Name    Media Type    File Size    Modified 2345_nysgrc0618071_thumbnail    Thumbnail 83 KB 3/4/2019 3:32 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx195140https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{DE4E47B3-0D83-483C-AC65-F8FE6D24E0B1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2457135Novel biosensor system maps the timing and location of Rac protein activation in a living mouse embryo fibroblast.8/20/2020 6:22:04 PM8/20/2020 6:22:04 PMType    Name    Media Type    File Size    Modified RAC1_activation_in_motile_fibroblast    High 627 KB 6/28/2016 3:00 PM Hall, Monique (NIH/NCI) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx16260https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{B0808E7F-84F4-4D3E-A355-D7F70A509103}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6982932Fourteen neurons (magenta) in the adult <em> Drosophila </em> brain produce insulin, and fat tissue sends packets of lipids to the brain via the lipoprotein carriers (green). This image was captured using a confocal microscope and shows a maximum intensity projection of many slices. <Br><Br>Related to images <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6983">6983</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6984">6984</a>, and <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6985">6985</a>.12/19/2023 7:12:13 PM12/19/2023 7:12:13 PMType    Name    Media Type    File Size    Modified #1_Dilp ApoII_M    Medium 320 KB 12/19/2023 2:13 PM Crowley, Rachel (NIH/NIGMS) [E Please let me know if you STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx355160https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{6519601A-B4F6-4AFB-89E6-4BA77ECF4F0A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
127693Stanford University scientist Vijay Pande decided to couple the power of computers with the help of the public. He initiated a project called Folding@Home, a so-called distributed computing project in which anyone who wants to can download a screensaver that performs protein-folding calculations when a computer is not in use. Folding@Home is modeled on a similar project called SETI@Home, which is used to search for extraterrestrial intelligence. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 4:33:33 PM10/28/2020 4:33:33 PMType    Name    Media Type    File Size    Modified ITC_F_H_M    Medium 198 KB 6/3/2016 2:51 PM aamishral2 (NIH/NIGMS) [C Appears in the NIGMS booklet <a STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx13560https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{0BF49B5E-2C98-4109-B082-1568838465C3}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2418323This delicate, birdlike projection is an immature seed of the <i>Arabidopsis</i> plant. The part in blue shows the cell that gives rise to the endosperm, the tissue that nourishes the embryo. The cell is expressing only the maternal copy of a gene called MEDEA. This phenomenon, in which the activity of a gene can depend on the parent that contributed it, is called genetic imprinting. In <i>Arabidopsis</i>, the maternal copy of MEDEA makes a protein that keeps the paternal copy silent and reduces the size of the endosperm. In flowering plants and mammals, this sort of genetic imprinting is thought to be a way for the mother to protect herself by limiting the resources she gives to any one embryo. Featured in the May 16, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-05-16/#1 target="_blank"><em>Biomedical Beat</em></a>.8/17/2020 7:59:57 PM8/17/2020 7:59:57 PMType    Name    Media Type    File Size    Modified Genetic_imprinting_L    Low 156 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C In flowering plants and mammals, this sort of genetic imprinting is thought to be a way for the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx163130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{755171FE-A0AC-4D55-8F76-BC6554F6076A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
68001015A Janus particle being used to activate a T cell, a type of immune cell. A Janus particle is a specialized microparticle with different physical properties on its surface, and this one is coated with nickel on one hemisphere and anti-CD3 antibodies (light blue) on the other. The nickel enables the Janus particle to be moved using a magnet, and the antibodies bind to the T cell and activate it. The T cell in this video was loaded with calcium-sensitive dye to visualize calcium influx, which indicates activation. The intensity of calcium influx was color coded so that warmer color indicates higher intensity. Being able to control Janus particles with simple magnets is a step toward controlling individual cells’ activities without complex magnetic devices.<Br><Br> More details can be found in the <em> Angewandte Chemie </em> paper <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201601211">“Remote control of T cell activation using magnetic Janus particles”</a> by Lee et al. This video was captured using epi-fluorescence microscopy. <Br><Br>Related to video <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6801">6801</a>. 8/17/2023 5:23:21 PM8/17/2023 5:23:21 PMType    Name    Media Type    File Size    Modified Magnetic particle switch for T cell activation-H    High 25441 KB 1/21/2022 2:46 PM Dolan, Lauren (NIH/NIGMS STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx15860https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{21EB1F1F-CCAE-4507-991B-8813F29A78C3}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3747630The TRPA1 protein is responsible for the burn you feel when you taste a bite of sushi topped with wasabi. Known therefore informally as the "wasabi receptor," this protein forms pores in the membranes of nerve cells that sense tastes or odors. Pungent chemicals like wasabi or mustard oil cause the pores to open, which then triggers a tingling or burn on our tongue. This receptor also produces feelings of pain in response to chemicals produced within our own bodies when our tissues are damaged or inflamed. Researchers used cryo-EM to reveal the structure of the wasabi receptor at a resolution of about 4 angstroms (a credit card is about 8 million angstroms thick). This detailed structure can help scientists understand both how we feel pain and how we can limit it by developing therapies to block the receptor. For more on cryo-EM see the blog post <a href="https://biobeat.nigms.nih.gov/2016/02/cryo-electron-microscopy-reveals-molecules-in-ever-greater-detail/">Cryo-Electron Microscopy Reveals Molecules in Ever Greater Detail</a>.12/17/2020 5:41:39 PM12/17/2020 5:41:39 PMType    Name    Media Type    File Size    Modified Wasabi3_L    Low 871 KB 6/3/2016 3:40 PM aamishral2 (NIH/NIGMS) [C This receptor also produces feelings of pain in response to chemicals produced within STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx207120https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{4884591D-B97A-4F28-9885-AB4AF6930D58}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3547667An image of the area of the mouse brain that serves as the 'master clock,' which houses the brain's time-keeping neurons. The nuclei of the clock cells are shown in blue. A small molecule called VIP, shown in green, enables neurons in the central clock in the mammalian brain to synchronize. More information about the research behind this image can be found in a <a href="http://biobeat.nigms.nih.gov/">Biomedical Beat Blog</a> posting from November 2013.5/13/2022 12:40:18 PM5/13/2022 12:40:18 PMType    Name    Media Type    File Size    Modified VIP_protein_color_L    Low 49 KB 6/3/2016 3:31 PM aamishral2 (NIH/NIGMS) [C An image of the area of the mouse STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx14180https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{A9C06EAD-A1B6-4BCB-A865-C886100DF8C1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2759497In the absence of the engulfment receptor Draper, salivary gland cells (light blue) persist in the thorax of a developing <i>Drosophila melanogaster</i> pupa. See image 2758 for a cross section of a normal pupa that does express Draper.8/21/2020 7:28:19 PM8/21/2020 7:28:19 PMType    Name    Media Type    File Size    Modified draper-mutant_S    Low 16 KB 9/14/2016 11:24 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx15970https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{4A178706-B83E-481F-B939-8ACA0AB2C112}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
1084151NIGMS staff are located in the Natcher Building on the NIH campus.8/27/2020 8:14:40 PM8/27/2020 8:14:40 PMType    Name    Media Type    File Size    Modified Natcher3_S    Low 127 KB 8/25/2016 5:16 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx25890https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{5EC8A225-6C5A-43EF-9D68-BF6A091D3FD7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3407395A LincRNA molecule, shown in red, serves as a scaffold for gene regulatory proteins, shown in grey. The DNA is represented as a grey double helix.12/23/2020 8:50:59 PM12/23/2020 8:50:59 PMType    Name    Media Type    File Size    Modified 3407_LinkRNA1_S    Low 50 KB 3/28/2019 4:29 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx142100https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{61D7873D-7170-4911-A06C-ABB1E0E53011}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3487664A special "messy" region of a potassium ion channel is important in its function.9/8/2020 10:55:58 PM9/8/2020 10:55:58 PMType    Name    Media Type    File Size    Modified BK_Virtual_structure    Other 1953 KB 9/26/2020 10:38 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx193130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{801B3D99-3943-4B03-9CF6-04BD027510D7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2795370Ecteinascidin 743 (ET-743, brand name Yondelis), was discovered and isolated from a sea squirt, <i>Ecteinascidia turbinata</i>, by NIGMS grantee Kenneth Rinehart at the University of Illinois. It was synthesized by NIGMS grantees E.J. Corey and later by Samuel Danishefsky. It is being tested for the treatment of several types of cancer. Multiple versions of this structure are available as entries 2790-2797.2/22/2021 9:13:50 PM2/22/2021 9:13:50 PMType    Name    Media Type    File Size    Modified ET_743_2_L    Low 5 KB 6/3/2016 3:17 PM aamishral2 (NIH/NIGMS) [C It was synthesized by NIGMS grantees E.J. STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx184100https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{86C9B538-29A6-4393-97EA-0AFC5C537F94}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3720817This wreath represents the molecular structure of a protein, Cas4, which is part of a system, known as CRISPR, that bacteria use to protect themselves against viral invaders. The green ribbons show the protein's structure, and the red balls show the location of iron and sulfur molecules important for the protein's function. Scientists harnessed Cas9, a different protein in the bacterial CRISPR system, to create a gene-editing tool known as CRISPR-Cas9. Using this tool, researchers are able to study a range of cellular processes and human diseases more easily, cheaply and precisely. In December, 2015, Science magazine recognized the CRISPR-Cas9 gene-editing tool as the "breakthrough of the year." Read more about Cas4 in the December 2015 Biomedical Beat post <a href="https://biobeat.nigms.nih.gov/2015/12/cool-images-a-holiday-themed-collection/">A Holiday-Themed Image Collection</a>.12/3/2020 8:52:01 PM12/3/2020 8:52:01 PMType    Name    Media Type    File Size    Modified Cas4_PDB_4ic11_M    Medium 377 KB 6/3/2016 3:39 PM aamishral2 (NIH/NIGMS) [C Read more about Cas4 in the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx230130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2943035F-E71B-47B6-B359-C2925A36BC57}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
5843644This video results from a research project to visualize which regions of the adult fruit fly (Drosophila) brain derive from each neural stem cell. First, researchers collected several thousand fruit fly larvae and fluorescently stained a random stem cell in the brain of each. The idea was to create a population of larvae in which each of the 100 or so neural stem cells was labeled at least once. When the larvae grew to adults, the researchers examined the flies’ brains using confocal microscopy. With this technique, the part of a fly’s brain that derived from a single, labeled stem cell “lights up.” The scientists photographed each brain and digitally colorized its lit-up area. By combining thousands of such photos, they created a 3-dimensional, color-coded map that shows which part of the Drosophila brain comes from each of its ~100 neural stem cells. In other words, each colored region shows which neurons are the progeny or “clones” of a single stem cell. This work established a hierarchical structure as well as nomenclature for the neurons in the Drosophila brain. Further research will relate functions to structures of the brain. Related to images <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3745">5838</a> and <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3808">5868</a 5/13/2022 12:38:16 PM5/13/2022 12:38:16 PMType    Name    Media Type    File Size    Modified 5843_Video 4_S    Low 110 KB 3/28/2019 2:29 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx19970https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{AA857D78-0446-4218-B128-C9BC7BE8FEB9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
67501002These microscopic roundworms, called <i>Caenorhabditis elegans</i>, lack eyes and the opsin proteins used by visual systems to detect colors. However, researchers found that the worms can still sense the color of light in a way that enables them to avoid pigmented toxins made by bacteria. This image was captured using a stereo microscope.3/24/2021 5:44:57 PM3/24/2021 5:44:57 PMType    Name    Media Type    File Size    Modified Ghosh et al_SciPak multimedia 1_2.24.2021_M    Medium 42 KB 3/24/2021 11:16 AM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx28460https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{760D483D-C76B-4606-BCD1-4887E3807BC8}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2509205Nucleotides in DNA are copied into RNA, where they are read three at a time to encode the amino acids in a protein. Many parts of a protein fold as the amino acids are strung together. See image 2510 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.1/27/2022 3:39:21 PM1/27/2022 3:39:21 PMType    Name    Media Type    File Size    Modified The_Genetic_Code_M    Medium 70 KB 7/27/2016 11:34 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx18960https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{3705D241-4A22-4929-ADC4-2EBEA5C0FFA6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6777915A 3D model of the human endoplasmic reticulum membrane protein complex (EMC) that identifies its nine essential subunits. The EMC plays an important role in making membrane proteins, which are essential for all cellular processes. This is the first atomic-level depiction of the EMC. Its structure was obtained using single-particle cryo-electron microscopy.12/6/2021 8:02:51 PM12/6/2021 8:02:51 PMType    Name    Media Type    File Size    Modified EMC_NIGMSVideoGallery-Lg    High 4824 KB 12/7/2021 10:06 AM Dolan, Lauren (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx177120https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{6B9B0617-6BFC-4A30-8D67-74F630BF8AAD}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3593802The feeding tube, or pharynx, of a planarian worm with cilia shown in red and muscle fibers shown in green10/19/2020 6:12:17 AM10/19/2020 6:12:17 AMType    Name    Media Type    File Size    Modified 3593_Isolated_Planarian_S    Low 110 KB 3/28/2019 4:09 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx18260https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F9C51F8D-4481-41A5-9BB0-B389BC724927}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
1337102A humorous treatment of the concept of a cycling cell. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 8:31:27 PM10/28/2020 8:31:27 PMType    Name    Media Type    File Size    Modified ITC_BicyclingCell_Copy_S    Low 56 KB 7/28/2016 4:00 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx17170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{0C346395-48A4-46CC-838A-C437166E6BE8}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2402189A crystal of RNase A protein created for X-ray crystallography, which can reveal detailed, three-dimensional protein structures.8/6/2020 6:44:52 PM8/6/2020 6:44:52 PMType    Name    Media Type    File Size    Modified f06D_RNase_A1_S    Low 65 KB 9/7/2016 3:26 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx14060https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{84664409-B084-46D1-9095-ED7222988EF4}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2309301As an egg cell develops, a process called polarization controls what parts ultimately become the embryo's head and tail. This picture shows an egg of the fruit fly <i>Drosophila</i>. Red and green mark two types of signaling proteins involved in polarization. Disrupting these signals can scramble the body plan of the embryo, leading to severe developmental disorders. Featured in the September 19, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-09-19/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 12:54:35 PM10/29/2020 12:54:35 PMType    Name    Media Type    File Size    Modified 2309_cell_polarity_S    Low 49 KB 3/29/2019 1:54 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx15960https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F5BC0800-555F-4CF8-82AB-5860BD0D261E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
67551007Insect brains, like the honeybee brain shown here, are very different in shape from human brains. Despite that, bee and human brains have a lot in common, including many of the genes and neurochemicals they rely on in order to function. The bright-green spots in this image indicate the presence of tyrosine hydroxylase, an enzyme that allows the brain to produce dopamine. Dopamine is involved in many important functions, such as the ability to experience pleasure. This image was captured using confocal microscopy.9/23/2021 3:05:46 PM9/23/2021 3:05:46 PMType    Name    Media Type    File Size    Modified IGB Bee Brain Robinson Lab_M    Medium 545 KB 4/6/2021 12:27 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx296110https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{A4B72739-220C-4865-ADD4-F79CA8848067}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
1315234Duplicated pair of chromosomes lined up and ready to cross over. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 7:55:49 PM10/28/2020 7:55:49 PMType    Name    Media Type    File Size    Modified ITC_CrossOver_before_Copy_M    Medium 28 KB 10/28/2020 3:55 PM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx15170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{7DA1442C-F0F8-43B2-9FD4-4D84902CCDFE}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2484331NIGMS-funded researchers led by Roger Kornberg solved the structure of RNA polymerase II. This is the enzyme in mammalian cells that catalyzes the transcription of DNA into messenger RNA, the molecule that in turn dictates the order of amino acids in proteins. For his work on the mechanisms of mammalian transcription, Kornberg received the Nobel Prize in Chemistry in 2006.9/18/2020 5:05:13 PM9/18/2020 5:05:13 PMType    Name    Media Type    File Size    Modified RNA_pol_II_medium    Medium 1184 KB 6/3/2016 3:12 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx27480https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2A10BFFD-1037-418C-890C-8D7FB32E4ED7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2749560This image integrates the thousands of known molecular and genetic interactions happening inside our bodies using a computer program called Cytoscape. Images like this are known as network wiring diagrams, but Cytoscape creator Trey Ideker somewhat jokingly calls them "hairballs" because they can be so complicated, intricate and hard to tease apart. Cytoscape comes with tools to help scientists study specific interactions, such as differences between species or between sick and diseased cells. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2737">image 2737</a>. Featured in the June 16, 2010, issue of <a href=http://publications.nigms.nih.gov/biobeat/10-06-16/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/12/2020 6:44:41 PM8/12/2020 6:44:41 PMType    Name    Media Type    File Size    Modified network_map_23_S    Low 88 KB 9/7/2016 2:25 PM Varkala, Venkat (NIH/NIGMS) [C Images like this are known as STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx17680https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2C441A06-3184-4A25-8DE1-C55F3EC23FBE}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3539735Molecular model of the struture of heme. Heme is a small, flat molecule with an iron ion (dark red) at its center. Heme is an essential component of hemoglobin, the protein in blood that carries oxygen throughout our bodies. This image first appeared in the <a href="http://publications.nigms.nih.gov/findings/sept13/hooked-on-heme.asp">September 2013 issue of Findings Magazine</a>.9/27/2020 4:35:34 AM9/27/2020 4:35:34 AMType    Name    Media Type    File Size    Modified Heme_topview_L    Low 44 KB 6/3/2016 3:31 PM aamishral2 (NIH/NIGMS) [C Heme is a small, flat molecule with an iron STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx13370https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{729ADC80-00C3-4C6B-94AA-8B287AF40865}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
5729703The HIV capsid is pear-shaped structure that is made of proteins the virus needs to mature and become infective. The capsid is inside the virus and delivers the virus' genetic information into a human cell. To better understand how the HIV capsid does this feat, scientists have used computer programs to simulate its assembly. This image shows a series of snapshots of the steps that grow the HIV capsid. A model of a complete capsid is shown on the far right of the image for comparison; the green, blue and red colors indicate different configurations of the capsid protein that make up the capsid “shell.” The bar in the left corner represents a length of 20 nanometers, which is less than a tenth the size of the smallest bacterium. Computer models like this also may be used to reconstruct the assembly of the capsids of other important viruses, such as Ebola or the Zika virus. <br><br> The studies reporting this research were published in <a href="http://www.nature.com/ncomms/2016/160513/ncomms11568/full/ncomms11568.html"><i>Nature Communications</i></a> and <a href="http://www.nature.com/nature/journal/v469/n7330/full/nature09640.html"><i>Nature</i></a>. <br><br> To learn more about how researchers used computer simulations to track the assembly of the HIV capsid, see <a href=" https://news.uchicago.edu/article/2016/06/14/simulations-describe-hivs-diabolical-delivery-device">this press release from the University of Chicago</a>.12/18/2020 4:10:47 PM12/18/2020 4:10:47 PMType    Name    Media Type    File Size    Modified HIV capsid synthesis 222px_TransparentBackground-1_S    Thumbnail 127 KB 3/20/2017 9:21 AM Machalek, Alisa STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx279110https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{C1FD6483-5B69-49FD-9F08-5665166A3E1D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
69291022A mouse brain that was genetically modified so that subpopulations of its neurons glow. Researchers often study mice because they share many genes with people and can shed light on biological processes, development, and diseases in humans. <Br><Br> This image was captured using a light sheet microscope. <Br><Br> Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6930">6930</a> and video <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6931">6931</a>. 3/28/2023 7:24:12 PM3/28/2023 7:24:12 PMType    Name    Media Type    File Size    Modified Green Mouse Brain_M    Medium 466 KB 3/28/2023 1:26 PM Bigler, Abbey (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx322130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{69FC294A-0B60-42B9-8ECF-C9318895AAF5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3521795Multiphoton fluorescence image of HeLa cells stained with the actin binding toxin phalloidin (red), microtubules (cyan) and cell nuclei (blue). Nikon RTS2000MP custom laser scanning microscope. See related images 3518,3519,3520,3522.9/27/2020 3:39:33 AM9/27/2020 3:39:33 AMType    Name    Media Type    File Size    Modified HeLa_cells_2_L    Low 134 KB 6/3/2016 3:30 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx17170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{23E73D20-7634-4D67-8AE3-852B4FDFDFA8}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131