Search Results

 

 

347719447This image is a computer-generated model of the approximately 4.2 million atoms of the HIV capsid, the shell that contains the virus' genetic material. Scientists determined the exact structure of the capsid and the proteins that it's made of using a variety of imaging techniques and analyses. They then entered these data into a supercomputer that produced the atomic-level image of the capsid. This structural information could be used for developing drugs that target the capsid, possibly leading to more effective therapies8/31/2020 4:28:05 AM8/31/2020 4:28:05 AMType    Name    Media Type    File Size    Modified and the proteins that it's made of using a variety of imaging techniques and analyses They then entered these data into a STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{4475C347-ACA7-4D71-B1A5-B70167940ACF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
360019618A mouse's fat cells (red) are shown surrounded by a network of blood vessels (green). Fat cells store and release energy, protect organs and nerve tissues, insulate us from the cold and help us absorb important vitamins. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/22/2022 8:43:42 PM11/22/2022 8:43:42 PMType    Name    Media Type    File Size    Modified 7_right_Fat_cells_and_blood_vessel_34in_Malide_H    High 4848 KB 10/19/2020 3:10 AM Harris, Donald (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F5343960-E864-40C3-A794-C1F7F1C9CD4F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
276719944A research mentor (Lori Eidson) and student (Nina Waldron, on the microscope) were 2009 members of the BRAIN (Behavioral Research Advancements In Neuroscience) program at Georgia State University in Atlanta. This program is an undergraduate summer research experience funded in part by NIGMS.8/28/2020 5:55:19 PM8/28/2020 5:55:19 PMType    Name    Media Type    File Size    Modified 2767_Research_mentor_and_S    Low 89 KB 3/29/2019 10:56 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{17C50E5A-1D3E-40D2-A327-B4B098B9FFBA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
680619691The two large, central, round shapes are ovaries from a typical fruit fly (<em>Drosophila melanogaster</em>). The small butterfly-like structures surrounding them are fruit fly ovaries where researchers suppressed the expression of a gene that controls microtubule polymerization and is necessary for normal development. This image was captured using a confocal laser scanning microscope. <Br><Br> Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6807">6807</a>. 1/21/2022 3:55:03 PM1/21/2022 3:55:03 PMType    Name    Media Type    File Size    Modified Wild-type and mutant fruit fly ovaries_M    Medium 119 KB 2/11/2022 1:44 PM Dolan, Lauren (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{1CE96574-AF64-43B2-8987-EDADC4899FE7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
232019412How far and fast an infectious disease spreads across a community depends on many factors, including transportation. These U.S. maps, developed as part of an international study to simulate and analyze disease spread, chart daily commuting patterns. They show where commuters live (top) and where they travel for work (bottom). Green represents the fewest number of people whereas orange, brown, and white depict the most. Such information enables researchers and policymakers to visualize how an outbreak in one area can spread quickly across a geographic region. Featured in the August 15, 2007, issue of <a href=http://publications.nigms.nih.gov/biobeat/07-08-15/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 1:48:39 PM10/29/2020 1:48:39 PMType    Name    Media Type    File Size    Modified 2320_mappingdisease1_S    Low 134 KB 3/29/2019 1:49 PM Constantinides, Stephen (NIH Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{DCC53428-D85F-4B28-AE7A-1BDF3A1498B7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
656819427These images illustrate a technique combining cryo-electron tomography and super-resolution fluorescence microscopy called correlative imaging by annotation with single molecules (CIASM). CIASM enables researchers to identify small structures and individual molecules in cells that they couldn’t using older techniques. 12/22/2020 3:22:47 PM12/22/2020 3:22:47 PMType    Name    Media Type    File Size    Modified Figure_2_72dpi    Thumbnail 63 KB 7/16/2020 3:27 PM Harris, Donald (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{93F7C98F-C6A0-4FA2-A019-AA17C2A1B17F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
690320146Real-time movie of young squids. Squids are often used as research organisms due to having the largest nervous system of any invertebrate, complex behaviors like instantaneous camouflage, and other unique traits. <Br><Br>This video was taken with polychromatic polarization microscope, as described in the <em>Scientific Reports</em> paper <a href=" https://www.nature.com/articles/srep17340/">“Polychromatic Polarization Microscope: Bringing Colors to a Colorless World”</a> by Shribak. The color is generated by interaction of white polarized light with the squid’s transparent soft tissue. The tissue works as a living tunable spectral filter, and the transmission band depends on the molecular orientation. When the young squid is moving, the tissue orientation changes, and its color shifts accordingly. 7/13/2022 8:02:15 PM7/13/2022 8:02:15 PMType    Name    Media Type    File Size    Modified Tools and Techniques https://www.nature.com/articles/srep17340 --this reference is just to show the technique STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{ABADE292-B556-4A17-BD4E-BDDEC4893BEA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
696520151As this cell was undergoing cell division, it was imaged with two microscopy techniques: differential interference contrast (DIC) and confocal. The DIC view appears in blue and shows the entire cell. The confocal view appears in pink and shows the chromosomes.1/27/2023 9:51:37 PM1/27/2023 9:51:37 PMType    Name    Media Type    File Size    Modified An oblong blue shape with a with two different microscopy techniques: differential interference contrast (DIC) and STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{CCDAC100-8DE1-4D58-8378-2F585CC18A16}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
679019591Two cells over a 2-hour period. The one on the bottom left goes through programmed cell death, also known as apoptosis. The one on the top right goes through cell division, also called mitosis. This video was captured using a confocal microscope. 12/27/2021 4:57:37 PM12/27/2021 4:57:37 PMType    Name    Media Type    File Size    Modified Technique: Structured Illumination Microscopy (SIM) Video: DNA during cell death and Technique: Confocal STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{CC8B5303-F2D9-4014-B9B9-68597C41C367}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
232519983In 2006, scientists developed an optical microscopy technique enabling them to clearly see individual molecules within cells. In 2007, they took the technique, abbreviated STORM, a step further. They identified multicolored probes that let them peer into cells and clearly see multiple cellular components at the same time, such as these microtubules (green) and small hollows called clathrin-coated pits (red). Unlike conventional methods, the multicolor STORM technique produces a crisp and high resolution picture. A sharper view of how cellular components interact will likely help scientists answer some longstanding questions about cell biology. Featured in the October 17, 2007, issue of <a href=http://publications.nigms.nih.gov/biobeat/07-10-17/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 2:02:16 PM10/29/2020 2:02:16 PMIn 2006, scientists developed an optical microscopy technique enabling them to clearly see individual molecules within Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{76D31C7C-D8E7-4BC2-BCAB-8D4B7465DE4F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
233219990This fingertip-shaped group of lights is a microscopic crystal called a quantum dot. About 10,000 times thinner than a sheet of paper, the dot radiates brilliant colors under ultraviolet light. Dots such as this one allow researchers to label and track individual molecules in living cells and may soon be used for speedy disease diagnosis, DNA testing, and screening for illegal drugs. Featured in the April 18, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-04-18/ target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 2:26:34 PM10/29/2020 2:26:34 PMType    Name    Media Type    File Size    Modified tiny_points_of_light_M    Medium 20 KB 6/3/2016 3:08 PM aamishral2 (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{D7A5D97F-8A57-4159-8882-08C793E64466}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
257619705A shell from the venomous cone snail <i>Conus omaria</i>, which lives in the Pacific and Indian oceans and eats other snails. University of Utah scientists discovered a new toxin in this snail species' venom, and say it will be a useful tool in designing new medicines for a variety of brain disorders, including Alzheimer's and Parkinson's diseases, depression, nicotine addiction and perhaps schizophrenia.10/30/2020 4:26:56 PM10/30/2020 4:26:56 PMType    Name    Media Type    File Size    Modified cone_snail_1_S    Low 47 KB 8/24/2016 5:34 PM Varkala, Venkat (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{96C38932-2035-4122-BF08-1F98065B2306}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
270220165A combo of protein structures determined experimentally and computationally shows us the complete metabolic network of a heat-loving bacterium.8/6/2020 4:36:05 PM8/6/2020 4:36:05 PMType    Name    Media Type    File Size    Modified 2702_Thermotoga_maritima_and_its_metabolic_network_T    Thumbnail 97 KB 3/29/2019 11:00 AM Constantinides STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{8BCB0A5C-8081-41B2-AEC1-62DCCD78EE99}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
589520204Details about the basic biology and chemistry of the ingredients that produce bioluminescence are allowing scientists to harness it as an imaging tool. Credit: Nathan Shaner, Scintillon Institute.<br></br> From Biomedical Beat article July 2017: <a href="https://biobeat.nigms.nih.gov/2017/07/chasing-fireflies-and-better-cellular-imaging-techniques/#more-4455">Chasing Fireflies—and Better Cellular Imaging Techniques</a>3/1/2021 7:16:46 PM3/1/2021 7:16:46 PMType    Name    Media Type    File Size    Modified bioluminescent microcentrifuge tubes_M    Medium 132 KB 7/21/2017 1:40 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F551D249-3908-41B8-8C99-C5109BA71043}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
333919629This is a super-resolution LM image taken by Hiro Hakozaki and Masa Hoshijima of NCMIR. The image contains highlighted calcium channels in cardiac muscle using a technique called dSTORM. The microscope used in the NCMIR lab was built by Hiro Hakozaki.12/23/2020 5:37:10 PM12/23/2020 5:37:10 PMType    Name    Media Type    File Size    Modified dSTORM_Cardiac1_L    Low 131 KB 6/3/2016 3:27 PM aamishral2 (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{0E46207E-187E-4107-BAE4-5B30FD3E8DE2}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
271519830These six-month-old axolotls, a kind of salamander, glow green and blue under ultraviolet light. That's because they were genetically modified to make harmless green fluorescent protein, or GFP. Like X-ray vision, GFP lets you see inside the axolotls as they hang out in their aquarium. GFP not only can reveal internal structures in living organisms, but it also can light up specific cells and even proteins within a cell. That allows scientists to identify and track things like cancer cells. Featured in the November 18, 2009 issue of <a href=http://publications.nigms.nih.gov/biobeat/09-11-18/index.html#1 target="_blank"><i>Biomedical Beat</i></a>.8/6/2020 5:03:23 PM8/6/2020 5:03:23 PMType    Name    Media Type    File Size    Modified 2715_axolotls_S    Low 41 KB 3/29/2019 10:59 AM Constantinides, Stephen (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{06348EA2-A821-4F0E-A69C-E06C9CC45935}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
359620015See video with ID <a href=http://images.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2580><i>2580</i></a> in Image Gallery.2/16/2021 10:15:43 PM2/16/2021 10:15:43 PMType    Name    Media Type    File Size    Modified These time series show the heart rates of four different individuals Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{6A9EA434-6BFD-4A66-A76A-C292E11501E9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
678919590Two mouse fibroblasts, one of the most common types of cells in mammalian connective tissue. They play a key role in wound healing and tissue repair. This image was captured using structured illumination microscopy. 12/27/2021 4:20:11 PM12/27/2021 4:20:11 PMType    Name    Media Type    File Size    Modified Technique: Structured Illumination Microscopy (SIM) Video: DNA during cell death and Technique: Confocal STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{911FF0EB-C528-450C-93F7-22CEEFA45FCF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
579320093What looks like the gossamer wings of a butterfly is actually the retina of a mouse, delicately snipped to lay flat and sparkling with fluorescent molecules. The image is from a research project investigating the promise of gene therapy for glaucoma. It was created at an NIGMS-funded advanced microscopy facility that develops technology for imaging across many scales, from whole organisms to cells to individual molecules. <BR><BR> The ability to obtain high-resolution imaging of tissue as large as whole mouse retinas was made possible by a technique called large-scale mosaic confocal microscopy, which was pioneered by the NIGMS-funded National Center for Microscopy and Imaging Research. The technique is similar to Google Earth in that it computationally stitches together many small, high-resolution images. <BR><BR> More details: <BR><BR> Glaucoma is a progressive eye disease and the leading cause of irreversible blindness. It is characterized by the death of neurons in the retina called retinal ganglion cells. A number of studies over the past decade suggest that targeting these cells with gene therapy designed to prevent their death might slow the progression of glaucoma. <BR><BR> This study is investigating whether a non-disease-causing virus (adeno-associated virus serotype 2) can effectively deliver genes to retinal ganglion cells. The researchers introduced into the virus a gene for green fluorescent protein (GFP) so they could visualize how well the virus transduced the cells. <BR><BR> Two months after viral delivery of the fluorescent vector to the eyes of 7-month-old mice, the researchers examined the entire retinas of the subjects under a microscope. The ability to obtain high-resolution imaging of tissue as large as whole mouse retinas was made possible by a technique called large-scale mosaic confocal microscopy, which was pioneered by the NIGMS-funded National Center for Microscopy and Imaging Research. The technique is similar to Google Earth in that it computationally stitches together many small, high-resolution images. <BR><BR> The researchers observed GFP expression (yellow) in all parts of the retinal ganglion cells (blue), including the soma, axons and dendritic tree. These results suggest that a viral delivery system could deliver therapeutic genes to retinal ganglion cells for treating glaucoma and related diseases. <BR><BR> EQUIPMENT: Olympus FluoView™ FV1000 Confocal Microscope. Fluorophores: green fluorescent protein and Alexa Fluor 568. Non-glaucomatous DBA/2J-Gpnmb+ mice. <BR><BR> Reflecting on the work, the lead researcher [Keunyoung (“Christine”) Kim] says: “It is amazing to see intricate and artistically organized microscopic structures. … I encountered an entirely new world invisible to the naked eye—a galaxy of infinite secrets and endless potential for discovery.” 12/18/2020 8:02:50 PM12/18/2020 8:02:50 PMby a technique called large-scale mosaic confocal microscopy, which was pioneered by the The technique is similar to Google Earth in that it computationally stitches together many STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{E2CC74AB-01A0-4BBC-964B-CF278FF727BA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
675619911Researchers doing behavioral experiments with honeybees sometimes use paint or enamel to give individual bees distinguishing marks. The elaborate social structure and impressive learning and navigation abilities of bees make them good models for behavioral and neurobiological research. Since the sequencing of the honeybee genome, published in 2006, bees have been used increasingly for research into the molecular basis for social interaction and other complex behaviors.4/6/2021 4:32:46 PM4/6/2021 4:32:46 PMType    Name    Media Type    File Size    Modified IGB Tagged Bees Robinson Lab_M    Medium 654 KB 4/6/2021 12:35 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{97555590-86F6-40A8-9859-7654050B334E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
680819693Two fruit fly (<em>Drosophila melanogaster</em>) larvae brains with neurons expressing fluorescently tagged tubulin protein. Tubulin makes up strong, hollow fibers called microtubules that play important roles in neuron growth and migration during brain development. This image was captured using confocal microscopy, and the color indicates the position of the neurons within the brain.1/20/2022 7:49:11 PM1/20/2022 7:49:11 PMType    Name    Media Type    File Size    Modified Drosophila 3rd instar larval brain expressing neuronal tubulin-Wen Lu and Vladimir I. Gelfand_M    Medium 175 KB STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{8643DBC3-712E-4596-B178-AE3E38631BAB}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
359819616Originally from the waters of India, Nepal and neighboring countries, zebrafish can now be found swimming in science labs (and home aquariums) throughout the world. This fish is a favorite study subject for scientists interested in how genes guide the early stages of prenatal development (including the developing fin shown here) and in the effects of environmental contamination on embryos.<Br><Br> In this image, green fluorescent protein (GFP) is expressed where the gene sox9b is expressed. Collagen (red) marks the fin rays, and DNA, stained with a dye called DAPI, is in blue. sox9b plays many important roles during development, including the building the heart and brain and is also necessary for skeletal development. At the University of Wisconsin, researchers have found that exposure to contaminants that bind the aryl-hydrocarbon receptor results in the downregulation of sox9b. Loss of sox9b severely disrupts development in zebrafish and causes a life-threatening disorder called campomelic dysplasia (CD) in humans. CD is characterized by cardiovascular, neural and skeletal defects. By studying the roles of genes such as sox9b in zebrafish, scientists hope to better understand normal development in humans as wells as how to treat developmental disorders and diseases.<Br><Br> This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, to <a href="https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx">click here</a>.11/28/2022 9:23:03 PM11/28/2022 9:23:03 PMType    Name    Media Type    File Size    Modified 11A_zebrafish fin2_Plavicki_H    High 7560 KB 10/19/2020 2:56 AM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{EA2A80AC-BD59-4A63-8FFC-C5AF94747636}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
681019695Three fruit fly (<em>Drosophila melanogaster</em>) ovarioles (yellow, blue, and magenta) with egg cells visible inside them. Ovarioles are tubes in the reproductive systems of female insects. Egg cells form at one end of an ovariole and complete their development as they reach the other end, as shown in the yellow wild-type ovariole. This process requires an important protein that is missing in the blue and magenta ovarioles. This image was created using confocal microscopy. <Br><Br> More information on the research that produced this image can be found in the <em> Current Biology</em> paper <a href="https://www.cell.com/current-biology/fulltext/S0960-9822(21)00669-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982221006692%3Fshowall%3Dtrue">“Gatekeeper function for Short stop at the ring canals of the <em>Drosophila</em> ovary”</a> by Lu et al. 1/21/2022 3:51:54 PM1/21/2022 3:51:54 PMType    Name    Media Type    File Size    Modified Fruit fly ovarioles_6810_M    Medium 290 KB 2/11/2022 2:16 PM Dolan, Lauren (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C9C95BC4-65E6-4B68-BC4A-814E3F8B69D5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
241919323This image of the human brain uses colors and shapes to show neurological differences between two people. The blurred front portion of the brain, associated with complex thought, varies most between the individuals. The blue ovals mark areas of basic function that vary relatively little. Visualizations like this one are part of a project to map complex and dynamic information about the human brain, including genes, enzymes, disease states, and anatomy. The brain maps represent collaborations between neuroscientists and experts in math, statistics, computer science, bioinformatics, imaging, and nanotechnology. Featured in the October 18, 2005, issue of <a href="http://publications.nigms.nih.gov/biobeat/05-10-18/#1" target="_blank"><em>Biomedical Beat</em></a>.5/12/2021 8:58:25 PM5/12/2021 8:58:25 PMType    Name    Media Type    File Size    Modified Brain_map_M    Medium 67 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C This image of the human brain uses STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{B082809A-5B3D-4BD2-B182-2FFDA2EBAE5B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
675219907The white circle in this image is a Petri dish, named for its inventor, Julius Richard Petri. These dishes are one of the most common pieces of equipment in biology labs, where researchers use them to grow cells. 3/24/2021 4:29:32 PM3/24/2021 4:29:32 PMType    Name    Media Type    File Size    Modified Ghosh et al_SciPak multimedia 2_2.24.2021_M    Medium 197 KB 3/24/2021 12:30 PM Walter Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{9E398F6D-39AB-4C53-9AC1-2968D86BF556}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
237519549Irina Dementieva, a biochemist, and Youngchang Kim, a biophysicist and crystallographer, work with the first robot if its type in the U.S. to automate protein prufication. The robot, which is housed in a refrigerator, is an integral part of the Midwest Structural Genomics Center's plan to automate the protein crystallography process.2/3/2021 7:38:27 PM2/3/2021 7:38:27 PMType    Name    Media Type    File Size    Modified hi_pg12_27014k04_L    Low 61 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{D3D16ADE-9B98-4EDE-A85C-A03856F00966}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
273720188Molecular biologists are increasingly relying on bioinformatics software to visualize molecular interaction networks and to integrate these networks with data such as gene expression profiles. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2749">image 2749</a>.6/2/2022 6:16:40 PM6/2/2022 6:16:40 PMType    Name    Media Type    File Size    Modified Cytoscape_S    Low 173 KB 7/28/2016 4:05 PM Varkala, Venkat (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{67F7DB45-9727-4B4F-AB86-6631CB63E31E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
689919726High-resolution time lapse of epithelial (skin) cell migration and wound healing. It shows an image taken every 13 seconds over the course of almost 14 minutes. The images were captured with quantitative orientation-independent differential interference contrast (DIC) microscope (left) and a conventional DIC microscope (right). <Br><Br>More information about the research that produced this video can be found in the <em>Journal of Microscopy</em> paper <a href="https://onlinelibrary.wiley.com/doi/10.1111/jmi.12682/">“An Orientation-Independent DIC Microscope Allows High Resolution Imaging of Epithelial Cell Migration and Wound Healing in a Cnidarian Model”</a> by Malamy and Shribak. 6/30/2022 4:45:48 PM6/30/2022 4:45:48 PMType    Name    Media Type    File Size    Modified circularlamellipodia    High 17708 KB 6/30/2022 3:03 PM Crowley, Rachel (NIH/NIGMS) [E STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{497BC427-08F6-402E-B25B-3FF48F096460}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
577019521Cell division is an incredibly coordinated process. It not only ensures that the new cells formed during this event have a full set of chromosomes, but also that they are endowed with all the cellular materials, including proteins, lipids and small functional compartments called organelles, that are required for normal cell activity. This proper apportioning of essential cell ingredients helps each cell get off to a running start.<Br><Br> This image shows an electron microscopy (EM) thin section taken at 10,000x magnification of a dividing yeast cell over-expressing the protein ubiquitin, which is involved in protein degradation and recycling. The picture features mother and daughter endosome accumulations (small organelles with internal vesicles), a darkly stained vacuole and a dividing nucleus in close contact with a cadre of lipid droplets (unstained spherical bodies). Other dynamic events are also visible, such as spindle microtubules in the nucleus and endocytic pits at the plasma membrane. <Br><Br>These extensive details were revealed thanks to a preservation method involving high-pressure freezing, freeze-substitution and Lowicryl HM20 embedding. 12/18/2020 6:43:14 PM12/18/2020 6:43:14 PMType    Name    Media Type    File Size    Modified doa4cs_oeUb_co69a_M    Medium 119 KB 7/26/2016 12:30 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F7AE0A8B-16E1-4D6F-95FD-BF2175A028B9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
245519775A team of chemists and physicists used nanotechnology and DNA's ability to self-assemble with matching RNA to create a new kind of chip for measuring gene activity. When RNA of a gene of interest binds to a DNA tile (gold squares), it creates a raised surface (white areas) that can be detected by a powerful microscope. This nanochip approach offers manufacturing and usage advantages over existing gene chips and is a key step toward detecting gene activity in a single cell. Featured in the February 20, 2008, issue of <a href=http://publications.nigms.nih.gov/biobeat/08-02-20/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/20/2020 5:51:20 PM8/20/2020 5:51:20 PMType    Name    Media Type    File Size    Modified 2455_Gold_gene_S    Low 127 KB 3/29/2019 11:27 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{1D011269-3AA9-44C4-8D58-702C27B5F5B6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
374119381The photo shows a confocal microscopy image of perineuronal nets (PNNs), which are specialized extracellular matrix (ECM) structures in the brain. The PNN surrounds some nerve cells in brain regions including the cortex, hippocampus and thalamus. Researchers study the PNN to investigate their involvement stabilizing the extracellular environment and forming nets around nerve cells and synapses in the brain. Abnormalities in the PNNs have been linked to a variety of disorders, including epilepsy and schizophrenia, and they limit a process called neural plasticity in which new nerve connections are formed. To visualize the PNNs, researchers labeled them with Wisteria floribunda agglutinin (WFA)-fluorescein. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3742">image 3742</a>.12/17/2020 5:33:10 PM12/17/2020 5:33:10 PMType    Name    Media Type    File Size    Modified Cortex_neuronal_ECM_L    Low 43 KB 6/3/2016 3:40 PM aamishral2 (NIH/NIGMS) [C TEM 5: Soleus muscle ECM on STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{49BF2F89-C3EB-46DB-A682-8EF8BF979760}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
374219382The photo shows a confocal microscopy image of perineuronal nets (PNNs), which are specialized extracellular matrix (ECM) structures in the brain. The PNN surrounds some nerve cells in brain regions including the cortex, hippocampus and thalamus. Researchers study the PNN to investigate their involvement stabilizing the extracellular environment and forming nets around nerve cells and synapses in the brain. Abnormalities in the PNNs have been linked to a variety of disorders, including epilepsy and schizophrenia, and they limit a process called neural plasticity in which new nerve connections are formed. To visualize the PNNs, researchers labeled them with Wisteria floribunda agglutinin (WFA)-fluorescein. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3741">image 3741</a>.12/17/2020 5:35:24 PM12/17/2020 5:35:24 PMType    Name    Media Type    File Size    Modified 3742_Cortex_neuronal_ECM_S    Low 128 KB 3/28/2019 4:01 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{FC6C3E72-F217-4DDB-A4D4-6C0B904EC50A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
675119906This Petri dish contains microscopic roundworms called <i>Caenorhabditis elegans</i>. Researchers used these particular worms to study how <i>C. elegans</i> senses the color of light in its environment. 3/24/2021 5:46:13 PM3/24/2021 5:46:13 PMType    Name    Media Type    File Size    Modified Ghosh et al_SciPak multimedia 3_2.24.2021_M    Medium 162 KB 3/24/2021 12:21 PM Walter Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C00999DD-94AD-4601-AB49-4C393FEDCF73}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
235719526This ACAPELLA robot for capillary protein crystallization grows protein crystals, freezes them, and centers them without manual intervention. The close-up is a view of one of the dispensers used for dispensing proteins and reagents.10/29/2020 3:49:11 PM10/29/2020 3:49:11 PMType    Name    Media Type    File Size    Modified hi_ACAPELLA_L    Low 72 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7331CD7F-A0B3-4872-BAD9-2422C41200EB}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
275419369This simulation of myosin V binding to actin was created using the software tool Protein Mechanica. With Protein Mechanica, researchers can construct models using information from a variety of sources: crystallography, cryo-EM, secondary structure descriptions, as well as user-defined solid shapes, such as spheres and cylinders. The goal is to enable experimentalists to quickly and easily simulate how different parts of a molecule interact.8/21/2020 6:10:42 PM8/21/2020 6:10:42 PMType    Name    Media Type    File Size    Modified mv_dimer_T    Thumbnail 4 KB 6/3/2016 3:17 PM aamishral2 (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{0B867130-6ACF-4FC5-A90B-30B55CA4182D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
235619525Student Christina Hueneke of the Midwest Center for Structural Genomics is overseeing a protein cloning robot. The robot was designed as part of an effort to exponentially increase the output of a traditional web lab. Part of the center's goal is to cut the average cost of analyzing a protein from $200,000 to $20,000 and to slash the average time from months to days and hours.10/29/2020 3:46:50 PM10/29/2020 3:46:50 PMType    Name    Media Type    File Size    Modified hi_25980k05_robo_M    Medium 213 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{D7D4DEC1-573D-4631-837D-923AF376135A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
675319908In many animals, the egg cell develops alongside sister cells. These sister cells are called nurse cells in the fruit fly (<em>Drosophila melanogaster</em>), and their job is to “nurse” an immature egg cell, or oocyte. Toward the end of oocyte development, the nurse cells transfer all their contents into the oocyte in a process called nurse cell dumping. This process involves significant shape changes on the part of the nurse cells (blue), which are powered by wavelike activity of the protein myosin (red). This image was captured using a confocal laser scanning microscope. Related to video <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6754">6754</a>.7/20/2021 3:09:41 PM7/20/2021 3:09:41 PMType    Name    Media Type    File Size    Modified fruit fly nurse cell_rs_M    Medium 38 KB 3/25/2021 4:46 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F11F0E4B-676C-45D6-B4EB-694558674C39}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
675419909In many animals, the egg cell develops alongside sister cells. These sister cells are called nurse cells in the fruit fly (<em>Drosophila melanogaster</em>), and their job is to “nurse” an immature egg cell, or oocyte. Toward the end of oocyte development, the nurse cells transfer all their contents into the oocyte in a process called nurse cell dumping. This video captures this transfer, showing significant shape changes on the part of the nurse cells (blue), which are powered by wavelike activity of the protein myosin (red). Researchers created the video using a confocal laser scanning microscope. Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6753">6753</a>.7/20/2021 3:43:33 PM7/20/2021 3:43:33 PMType    Name    Media Type    File Size    Modified Fruit fly nurse cell video (1)    High 23777 KB 3/25/2021 4:51 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{832C5196-E92F-48A5-B7CD-AF878621F7A3}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
572919493The HIV capsid is pear-shaped structure that is made of proteins the virus needs to mature and become infective. The capsid is inside the virus and delivers the virus' genetic information into a human cell. To better understand how the HIV capsid does this feat, scientists have used computer programs to simulate its assembly. This image shows a series of snapshots of the steps that grow the HIV capsid. A model of a complete capsid is shown on the far right of the image for comparison; the green, blue and red colors indicate different configurations of the capsid protein that make up the capsid “shell.” The bar in the left corner represents a length of 20 nanometers, which is less than a tenth the size of the smallest bacterium. Computer models like this also may be used to reconstruct the assembly of the capsids of other important viruses, such as Ebola or the Zika virus. <br><br> The studies reporting this research were published in <a href="http://www.nature.com/ncomms/2016/160513/ncomms11568/full/ncomms11568.html"><i>Nature Communications</i></a> and <a href="http://www.nature.com/nature/journal/v469/n7330/full/nature09640.html"><i>Nature</i></a>. <br><br> To learn more about how researchers used computer simulations to track the assembly of the HIV capsid, see <a href=" https://news.uchicago.edu/article/2016/06/14/simulations-describe-hivs-diabolical-delivery-device">this press release from the University of Chicago</a>.12/18/2020 4:10:47 PM12/18/2020 4:10:47 PMType    Name    Media Type    File Size    Modified HIV capsid synthesis 222px_TransparentBackground-1_S    Thumbnail 127 KB 3/20/2017 9:21 AM Machalek, Alisa STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C1FD6483-5B69-49FD-9F08-5665166A3E1D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
277119945Under the microscope, an <i>E. coli</i> cell lights up like a fireball. Each bright dot marks a surface protein that tells the bacteria to move toward or away from nearby food and toxins. Using a new imaging technique, researchers can map the proteins one at a time and combine them into a single image. This lets them study patterns within and among protein clusters in bacterial cells, which don't have nuclei or organelles like plant and animal cells. Seeing how the proteins arrange themselves should help researchers better understand how cell signaling works. A movie containing this image was featured in the August 19, 2009, issue of <a href=http://publications.nigms.nih.gov/biobeat/09-08-19/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/28/2020 5:59:20 PM8/28/2020 5:59:20 PMType    Name    Media Type    File Size    Modified Using a new imaging technique, researchers can map the proteins one at a time and combine STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{12F702C2-09EA-4026-A4FF-44FEB4FB31A5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
355619924Luciferase-based imaging enables visualization and quantification of internal organs and transplanted cells in live adult zebrafish. In this image, a cardiac muscle-restricted promoter drives firefly luciferase expression. Lateral (Top) and overhead views (Bottom) are shown.10/5/2020 5:20:22 AM10/5/2020 5:20:22 AMType    Name    Media Type    File Size    Modified Poss-zebrafish-01    High 416 KB 6/3/2016 3:31 PM aamishral2 (NIH/NIGMS) [C br>For imagery of the overhead STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3D1F01B8-728A-4F3D-B381-CF2B50DEAA2C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
689119721Microtubules in African green monkey cells. Microtubules are strong, hollow fibers that provide cells with structural support. Here, the microtubules have been color-coded based on their distance from the microscope lens: purple is closest to the lens, and yellow is farthest away. This image was captured using Stochastic Optical Reconstruction Microscopy (STORM). <Br><Br> Related to images <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6889">6889</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6890">6890</a>, and <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6892">6892</a>. 4/4/2022 4:10:02 PM4/4/2022 4:10:02 PMType    Name    Media Type    File Size    Modified MicrotubulesinMonkeyCells_M    Medium 240 KB 4/4/2022 10:39 AM Bigler, Abbey (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{1F39E3DF-F3C9-48A9-9597-492A967EA195}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
270820167A blue laser beam turns on a protein that helps this human cancer cell move. Responding to the stimulus, the protein, called Rac1, first creates ruffles at the edge of the cell. Then it stretches the cell forward, following the light like a horse trotting after a carrot on a stick. This new light-based approach can turn Rac1 (and potentially many other proteins) on and off at exact times and places in living cells. By manipulating a protein that controls movement, the technique also offers a new tool to study embryonic development, nerve regeneration and cancer. Featured in the September 16, 2009, issue of <a href=http://publications.nigms.nih.gov/biobeat/09-09-16/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/6/2020 4:31:43 PM8/6/2020 4:31:43 PMType    Name    Media Type    File Size    Modified a protein that controls movement, the technique also offers a new tool to study embryonic A blue laser beam turns on STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{687A0EA7-3610-49D0-AED1-F7F73EBE909C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
688920056Lysosomes (yellow) and detyrosinated microtubules (light blue). Lysosomes are bubblelike organelles that take in molecules and use enzymes to break them down. Microtubules are strong, hollow fibers that provide structural support to cells. The researchers who took this image found that in epithelial cells, detyrosinated microtubules are a small subset of fibers, and they concentrate lysosomes around themselves. This image was captured using Stochastic Optical Reconstruction Microscopy (STORM). <Br><Br> Related to images <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6890">6890</a>, <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6891">6891</a>, and <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6892">6892</a>.4/4/2022 4:06:18 PM4/4/2022 4:06:18 PMType    Name    Media Type    File Size    Modified Lysosomes_M    Medium 128 KB 4/1/2022 4:38 PM Bigler, Abbey (NIH/NIGMS) [C Let me know if this is good or if STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{61D1D731-2E41-4381-B686-1D02186676AD}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
376619407Gene transcription is a process by which the genetic information encoded in DNA is transcribed into RNA. It's essential for all life and requires the activity of proteins, called transcription factors, that detect where in a DNA strand transcription should start. In eukaryotes (i.e., those that have a nucleus and mitochondria), a protein complex comprising 14 different proteins is responsible for sniffing out transcription start sites and starting the process. This complex, called TFIID, represents the core machinery to which an enzyme, named RNA polymerase, can bind to and read the DNA and transcribe it to RNA. Scientists have used cryo-electron microscopy (cryo-EM) to visualize the TFIID-RNA polymerase-DNA complex in unprecedented detail. In this illustration, TFIID (blue) contacts the DNA and recruits the RNA polymerase (gray) for gene transcription. The start of the transcribed gene is shown with a flash of light. To learn more about the research that has shed new light on gene transcription, see this <a href="http://newscenter.lbl.gov/2016/03/23/unlocking-the-secrets-of-gene-expression/">news release from Berkeley Lab</a>. Related to <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=2981"> video 5730</a>.2/4/2020 3:27:07 PM2/4/2020 3:27:07 PMGene transcription is a process by which the genetic information encoded in DNA is transcribed into RNA It's essential for all life and requires the activity of proteins, called transcription STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{DBBF8C72-E3E6-4876-9D6F-C55EC7FF7758}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
274919857This image integrates the thousands of known molecular and genetic interactions happening inside our bodies using a computer program called Cytoscape. Images like this are known as network wiring diagrams, but Cytoscape creator Trey Ideker somewhat jokingly calls them "hairballs" because they can be so complicated, intricate and hard to tease apart. Cytoscape comes with tools to help scientists study specific interactions, such as differences between species or between sick and diseased cells. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2737">image 2737</a>. Featured in the June 16, 2010, issue of <a href=http://publications.nigms.nih.gov/biobeat/10-06-16/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/12/2020 6:44:41 PM8/12/2020 6:44:41 PMType    Name    Media Type    File Size    Modified network_map_23_S    Low 88 KB 9/7/2016 2:25 PM Varkala, Venkat (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{2C441A06-3184-4A25-8DE1-C55F3EC23FBE}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
680519690<em>Staphylococcus aureus</em> bacteria (green) grouping together upon contact with synovial fluid—a viscous substance found in joints. The formation of groups can help protect the bacteria from immune system defenses and from antibiotics, increasing the likelihood of an infection. This video is a 1-hour time lapse and was captured using a confocal laser scanning microscope. <Br><Br> More information about the research that produced this video can be found in the <em>Microbiology Spectrum</em> paper <a href="https://journals.asm.org/doi/full/10.1128/Spectrum.00267-21">“Synovial fluid-induced aggregation occurs across <em>Staphylococcus aureus</em> clinical isolates and is mechanistically independent of attached biofilm formation”</a> by Staats et al. <Br><Br> Related to images <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6803">6803</a> and <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6804">6804</a>. 1/21/2022 3:55:24 PM1/21/2022 3:55:24 PMType    Name    Media Type    File Size    Modified Br><Br> More information about the research that produced this video can be found in Technique: Fluorescence Time-lapse Imaging used for image collection; 1 hour of imaging STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{61CD18EB-4854-45A7-9B35-B685982060F1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
675519910Insect brains, like the honeybee brain shown here, are very different in shape from human brains. Despite that, bee and human brains have a lot in common, including many of the genes and neurochemicals they rely on in order to function. The bright-green spots in this image indicate the presence of tyrosine hydroxylase, an enzyme that allows the brain to produce dopamine. Dopamine is involved in many important functions, such as the ability to experience pleasure. This image was captured using confocal microscopy.9/23/2021 3:05:46 PM9/23/2021 3:05:46 PMType    Name    Media Type    File Size    Modified IGB Bee Brain Robinson Lab_M    Medium 545 KB 4/6/2021 12:27 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{A4B72739-220C-4865-ADD4-F79CA8848067}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
231719409These colorful, computer-generated ribbons show the backbone of a molecule that glows a fluorescent red. The molecule, called mStrawberry, was created by chemists based on a protein found in the ruddy lips of a coral. Scientists use the synthetic molecule and other "fruity" ones like it as a dye to mark and study cell structures. Featured in the April 18, 2007, issue of <a href=http://publications.nigms.nih.gov/biobeat/07-04-18/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 1:18:41 PM10/29/2020 1:18:41 PMType    Name    Media Type    File Size    Modified 2317_FruitDyes_S    Low 83 KB 3/29/2019 1:51 PM Constantinides, Stephen (NIH/NIGMS) [C Tools and Techniques STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{62278375-2AA3-4063-84BB-497CE6085362}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232
680120023A macrophage—a type of immune cell that engulfs invaders—“eats” and is activated by a “two-faced” Janus particle. The particle is called “two-faced” because each of its two hemispheres is coated with a different type of molecule, shown here in red and cyan. During macrophage activation, a transcription factor tagged with a green fluorescence protein (NF-κB) gradually moves from the cell’s cytoplasm into its nucleus and causes DNA transcription. The distribution of molecules on “two-faced” Janus particles can be altered to control the activation of immune cells. Details on this “geometric manipulation” strategy can be found in the <em> Proceedings of the National Academy of Sciences</em> paper <a href="https://www.pnas.org/content/116/50/25106.long">"Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling" </a> by Li et al. and the <em> Scientific Reports</em> paper<a href="https://www.nature.com/articles/s41598-021-92910-9"> "Spatial organization of FcγR and TLR2/1 on phagosome membranes differentially regulates their synergistic and inhibitory receptor crosstalk"</a> by Li et al. This video was captured using epi-fluorescence microscopy. <Br><Br>Related to video <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6800">6800</a>.1/21/2022 3:57:23 PM1/21/2022 3:57:23 PMType    Name    Media Type    File Size    Modified Macrophage activation-H    High 20221 KB 1/21/2022 2:50 PM Dolan, Lauren (NIH/NIGMS) [C Here is the link to a STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{31BAA0E0-226C-4A0C-84A7-8C772C0B3749}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3232