Search Results

 

 

34381142The chemical structure of the morphine molecule8/22/2020 4:44:39 PM8/22/2020 4:44:39 PMMorphine_structure__thumbnail_    Thumbnail 2 KB 6/3/2016 3:29 PM aamishral2 (NIH Morphine_structure_L    High 4772 KB 6/3/2016 3:29 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3960https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{6EE205B7-C53B-4A56-B1E5-DB767CF5273F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2342467X-ray structure of a new DNA repair enzyme superfamily representative from the human gastrointestinal bacterium <i>Enterococcus faecalis</i>. European scientists used this structure to generate homologous structures. Featured as the May 2007 Protein Structure Initiative Structure of the Month.10/29/2020 2:46:36 PM10/29/2020 2:46:36 PMEuropean scientists used this structure to generate homologous structures Featured as the May 2007 Protein Structure Initiative Structure of the Month STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4870https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{985DEF74-B19F-428E-A73F-96B3A80C5557}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2363787The goal of the PSI is to determine the three-dimensional shapes of a wide range of proteins by solving the structures of representative members of each protein family found in nature. The collection of structures should serve as a valuable resource for biomedical research scientists.10/29/2020 4:12:18 PM10/29/2020 4:12:18 PMhi_gene_to_structure_M    Medium 17 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C The collection of structures should serve as a valuable resource for biomedical research STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx5490https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{5707B2E3-09B2-4FAE-824E-FD8FD64AF328}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2343659This crystal structure shows a conserved hypothetical protein from <i>Mycobacterium tuberculosis</i>. Only 12 other proteins share its sequence homology, and none has a known function. This structure indicates the protein may play a role in metabolic pathways. Featured as one of the August 2007 Protein Structure Initiative Structures of the Month.10/29/2020 2:48:36 PM10/29/2020 2:48:36 PMThis structure indicates the protein may play a role in metabolic pathways Featured as one of the August 2007 Protein Structure Initiative Structures of the Month STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3870https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{C049B741-42A1-4298-8E5F-15EE784B48B7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
66011323This animation shows atoms of the HIV capsid, the shell that encloses the virus's genetic material. Scientists determined the exact structure of the capsid using a variety of imaging techniques and analyses. They then entered this data into a supercomputer to produce this image. Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=3477">3477</a>. 11/14/2023 1:23:27 PM11/14/2023 1:23:27 PMAtomic-Level Structure of the HIV Capsid    High 20229 KB 12/10/2020 5:41 PM atomic-level structure of HIV capsid_thumbnail    Thumbnail 12 KB 12/10/2020 STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4470https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2C77B30F-B214-4301-B475-E0433A651C12}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2337462Crystal structure of the beta2-adrenergic receptor protein. This is the first known structure of a human G protein-coupled receptor, a large family of proteins that control critical bodily functions and the action of about half of today's pharmaceuticals. Featured as one of the November 2007 Protein Structure Initiative Structures of the Month.10/29/2020 2:35:50 PM10/29/2020 2:35:50 PMType    Name    Media Type    File Size    Modified 2337_beta2-adrenergic_T    Thumbnail 108 KB 3/29/2019 1:47 PM Constantinides, Stephen Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx47110https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{55028E4D-1BE0-45A9-BB7C-A6F9AA03316D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2340465This is the first structure of a protein derived from the metagenomic sequences collected during the Sorcerer II Global Ocean Sampling project. The crystal structure shows a barrel protein with a ferredoxin-like fold and a long chain fatty acid in a deep cleft (shaded red). Featured as one of the August 2007 Protein Structure Initiative Structures of the Month.10/29/2020 2:41:27 PM10/29/2020 2:41:27 PMType    Name    Media Type    File Size    Modified 2340_jcsg20d6_S    Low 79 KB 3/29/2019 1:45 PM Constantinides, Stephen (NIH/NIGMS) [C Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4470https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{306636AD-6984-4103-B367-87B1EB3474FA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2339464NMR solution structure of a plant protein that may function in host defense. This protein was expressed in a convenient and efficient wheat germ cell-free system. Featured as the June 2007 Protein Structure Initiative Structure of the Month.10/29/2020 2:40:04 PM10/29/2020 2:40:04 PMType    Name    Media Type    File Size    Modified Featured as the June 2007 Protein Structure Initiative Structure of the Month Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx41100https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{47234FEB-EE1D-4DF6-A666-446A5C2D9E37}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2365789A global "map of the protein structure universe." The Berkeley Structural Genomics Center has developed a method to visualize the vast universe of protein structures in which proteins of similar structure are located close together and those of different structures far away in the space. This map, constructed using about 500 of the most common protein folds, reveals a highly non-uniform distribution, and shows segregation between four elongated regions corresponding to four different protein classes (shown in four different colors). Such a representation reveals a high-level of organization of the protein structure universe.10/29/2020 4:16:23 PM10/29/2020 4:16:23 PMa representation reveals a high-level of organization of the protein structure universe Map of protein structures 01 Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx5060https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2388E2EB-3730-4F33-A049-087CFC2A4AFF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2372794Crystal structure of a protein with unknown function from <i>Xanthomonas campestris</i>, a plant pathogen. Eight copies of the protein crystallized to form a ring. Chosen as the December 2007 Protein Structure Initiative Structure of the Month.10/29/2020 4:26:44 PM10/29/2020 4:26:44 PMType    Name    Media Type    File Size    Modified Chosen as the December 2007 Protein Structure Initiative Structure of the Month Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3280https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{87B885D1-27EB-4EB7-8EEB-FFD75998D185}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2373468Crystal structure of oligoendopeptidase F, a protein slicing enzyme from <i>Bacillus stearothermophilus</i>, a bacterium that can cause food products to spoil. The crystal was formed using a microfluidic capillary, a device that enables scientists to independently control the parameters for protein crystal nucleation and growth. Featured as one of the July 2007 Protein Structure Initiative Structures of the Month.10/29/2020 4:30:39 PM10/29/2020 4:30:39 PMType    Name    Media Type    File Size    Modified Technologies Center for Gene to 3D Structure/Midwest Center for Structural Genomics Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4280https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{0D97FDE5-F4E0-4172-A7C4-8FCFDBC60F26}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2748845This ribbon drawing of a protein hand drawn and colored by researcher Jane Richardson in 1981 helped originate the ribbon representation of proteins that is now ubiquitous in molecular graphics. The drawing shows the 3-dimensional structure of the protein triose phosphate isomerase. The green arrows represent the barrel of eight beta strands in this structure and the brown spirals show the protein's eight alpha helices. A black and white version of this drawing originally illustrated a <a href=http://kinemage.biochem.duke.edu/teaching/anatax target="_blank">review article</a> in <i>Advances in Protein Chemistry</i>, volume 34, titled "Anatomy and Taxonomy of Protein Structures." The illustration was selected as Picture of The Day on the English Wikipedia for November 19, 2009. Other important and beautiful images of protein structures by Jane Richardson are available in her <a href=http://commons.wikimedia.org/wiki/User:Dcrjsr/gallery_of_protein_structure target="_blank">Wikimedia gallery</a>.8/18/2020 7:55:11 PM8/18/2020 7:55:11 PMThe drawing shows the 3-dimensional structure of the protein triose phosphate isomerase barrel of eight beta strands in this structure and the brown spirals show the protein's STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx34100https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{463859B2-279A-4E80-A85C-A2382E815BD5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3314735Opioid receptors on the surfaces of brain cells are involved in pleasure, pain, addiction, depression, psychosis, and other conditions. The receptors bind to both innate opioids and drugs ranging from hospital anesthetics to opium. Researchers at The Scripps Research Institute, supported by the NIGMS Protein Structure Initiative, determined the first three-dimensional structure of a human opioid receptor, a kappa-opioid receptor. In this illustration, the submicroscopic receptor structure is shown while bound to an agonist (or activator). The structure is superimposed on a poppy flower, the source of opium. From a Scripps Research Institute <a href=http://www.scripps.edu/news/press/20120321stevens.html target="_blank">news release</a>.12/23/2020 4:46:54 PM12/23/2020 4:46:54 PMby the NIGMS Protein Structure Initiative, determined the first three-dimensional structure of a human opioid receptor, a Human opioid receptor structure superimposed on poppy STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4270https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{4BBF8D4D-E333-41E5-9B54-06A7AA38E085}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2571831This video shows the structure of the pore-forming protein VDAC-1 from humans. This molecule mediates the flow of products needed for metabolism--in particular the export of ATP--across the outer membrane of mitochondria, the power plants for eukaryotic cells. VDAC-1 is involved in metabolism and the self-destruction of cells--two biological processes central to health. Relates to a <a href=http://www.nigms.nih.gov/News/Results/20080904_announce.htm target="_blank">September 4, 2008 news release</a>.3/4/2022 7:28:57 PM3/4/2022 7:28:57 PMType    Name    Media Type    File Size    Modified also can send you a movie with a rotating structure but this would be about 23 MB. May be Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx42200https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{7A695641-F7C2-4B40-8E22-3DC1F1AF3080}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3487950A special "messy" region of a potassium ion channel is important in its function.9/8/2020 10:55:58 PM9/8/2020 10:55:58 PMBK_Virtual_structure_M    Medium 253 KB 9/8/2020 6:52 PM Harris, Donald (NIH/NIGMS BK_Virtual_structure_thumbnail    Thumbnail 2 KB 9/8/2020 6:52 PM Harris, Donald STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4970https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{801B3D99-3943-4B03-9CF6-04BD027510D7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2426677The structure of a gene-regulating zinc finger protein bound to DNA.8/17/2020 9:31:43 PM8/17/2020 9:31:43 PMType    Name    Media Type    File Size    Modified DesignedZF    High 595 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4190https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{05B06D12-30DC-46F0-97A0-41AAFF3B328B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2355596Model of the enzyme Nicotinic acid phosphoribosyltransferase. This enzyme, from the archaebacterium, <i>Pyrococcus furiosus</i>, is expected to be structurally similar to a clinically important human protein called B-cell colony enhancing factor based on amino acid sequence similarities and structure prediction methods. The structure consists of identical protein subunits, each shown in a different color, arranged in a ring.10/29/2020 3:44:23 PM10/29/2020 3:44:23 PMfactor based on amino acid sequence similarities and structure prediction methods The structure consists of identical protein subunits, each shown in a different color STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx6260https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{32F0F10A-7087-466D-BEE4-36238144FEC6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2367790A global "map of the protein structure universe" indicating the positions of specific proteins. The preponderance of small, less-structured proteins near the origin, with the more highly structured, large proteins towards the ends of the axes, may suggest the evolution of protein structures.10/29/2020 4:18:37 PM10/29/2020 4:18:37 PMType    Name    Media Type    File Size    Modified hi_map500examples_L    Low 82 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4790https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{8B5616E0-C0D5-468B-ACDC-A2D314BF8A73}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2345660Structure of a magnesium transporter protein from an antibiotic-resistant bacterium (<i>Enterococcus faecalis</i>) found in the human gut. Featured as one of the June 2007 Protein Sructure Initiative Structures of the Month.10/29/2020 2:58:36 PM10/29/2020 2:58:36 PMType    Name    Media Type    File Size    Modified 2345_nysgrc0618071_thumbnail    Thumbnail 83 KB 3/4/2019 3:32 PM Constantinides, Stephen Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx5270https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{DE4E47B3-0D83-483C-AC65-F8FE6D24E0B1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
37711039Viruses have been the foes of animals and other organisms for time immemorial. For almost as long, they've stayed well hidden from view because they are so tiny (they aren't even cells, so scientists call the individual virus a "particle"). This image shows a molecular model of a particle of the Rous sarcoma virus, a virus that infects and sometimes causes cancer in chickens. In the background is a photo of red blood cells. The particle shown is "immature" (not yet capable of infecting new cells) because it has just budded from an infected chicken cell and entered the bird's bloodstream. The outer shell of the immature virus is made up of a regular assembly of large proteins (shown in red) that are linked together with short protein molecules called peptides (green). This outer shell covers and protects the proteins (blue) that form the inner shell of the particle. But as you can see, the protective armor of the immature virus contains gaping holes. As the particle matures, the short peptides are removed and the large proteins rearrange, fusing together into a solid sphere capable of infecting new cells. While still immature, the particle is vulnerable to drugs that block its development. Knowing the structure of the immature particle may help scientists develop better medications against RSV and similar viruses in humans. Scientists used sophisticated computational tools to reconstruct the RSV atomic structure by crunching various data on the RSV proteins to simulate the entire structure of immature RSV. For more on RSV and how researchers revealed its delicate structure, see the NIH director's blog post <a href="https://directorsblog.nih.gov/2016/04/14/snapshots-of-life-imperfect-but-beautiful-intruder/">Snapshots of Life: Imperfect but Beautiful Intruder.</a>12/17/2020 6:39:16 PM12/17/2020 6:39:16 PMtools to reconstruct the RSV atomic structure by crunching various data on the RSV proteins to simulate the entire structure of immature RSV STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx37150https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{A147967A-CD83-453D-8FF9-DC930253A9F5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2351665An NMR solution structure model of the transfer RNA splicing enzyme endonuclease in humans (subunit Sen15). This represents the first structure of a eukaryotic tRNA splicing endonuclease subunit.10/29/2020 3:06:53 PM10/29/2020 3:06:53 PMType    Name    Media Type    File Size    Modified 2351_hi_2gw6_S    Low 93 KB 3/29/2019 11:48 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4280https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{95C0D2AD-AB59-4100-83B0-78CA3F50C76E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3307732A study published in March 2012 used cryo-electron microscopy to determine the structure of the DNA replication origin recognition complex (ORC), a semi-circular, protein complex (yellow) that recognizes and binds DNA to start the replication process. The ORC appears to wrap around and bend approximately 70 base pairs of double stranded DNA (red and blue). Also shown is the protein Cdc6 (green), which is also involved in the initiation of DNA replication. The video shows the structure from different angles. From a Brookhaven National Laboratory <a href=http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1391&template=Today target="_blank">news release</a>, "Study Reveals How Protein Machinery Binds and Wraps DNA to Start Replication." See related image <a href=http://images.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3597><i>3597</i></a>.12/22/2020 11:01:10 PM12/22/2020 11:01:10 PMThe light brown shading represents the structure obtained by cryo-EM The ribbon diagram structures came from X-ray crystallography and were superimposed on the cryo-EM structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4160https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{4E2A15E1-0A1E-4F7D-9AE7-49FFE5103E20}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2514816HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2513">2513</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2515">2515</a> for other versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:29:40 PM9/25/2020 4:29:40 PMType    Name    Media Type    File Size /education/Booklets/The-Structures-of-Life/Pages/Home.aspx"><em>The Structures of Life</em The Structures of Life pages 36-37 Life STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{7C26D3D2-FF70-420C-A0BC-1E2725806E59}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2432682Cell showing overproduction of the ARTS protein (red). ARTS triggers apoptosis, as shown by the activation of caspase-3 (green) a key tool in the cell's destruction. The nucleus is shown in blue. Image is featured in October 2015 Biomedical Beat blog post <a href="http://biobeat.nigms.nih.gov/2015/10/cool-images-a-halloween-inspired-cell-collection/" target="_">Cool Images: A Halloween-Inspired Cell Collection</a>.8/18/2020 9:19:05 PM8/18/2020 9:19:05 PMType    Name    Media Type    File Size    Modified ARTS_triggers_apoptosis    High 81 KB 6/3/2016 3:11 PM aamishral2 (NIH/NIGMS) [C Structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4770https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{5E4EB106-B5AB-408D-802C-F9AD60D9DC04}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36161167The lubber grasshopper, found throughout the southern United States, is frequently used in biology classes to teach students about the respiratory system of insects. Unlike mammals, which have red blood cells that carry oxygen throughout the body, insects have breathing tubes that carry air through their exoskeleton directly to where it's needed. This image shows the breathing tubes embedded in the weblike sheath cells that cover developing egg chambers. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/28/2022 9:47:06 PM11/28/2022 9:47:06 PMType    Name    Media Type    File Size    Modified 10_3_grasshopper-ovary-Edwards-3000px    Other 39595 KB 10/25/2020 9:44 PM Harris, Donald Structure, insect STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx37160https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E134B4F1-837B-44F9-84B7-BA084A3E76DF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2508626Proteins are made of amino acids hooked end-to-end like beads on a necklace. To become active, proteins must twist and fold into their final, or "native," conformation." A protein's final shape enables it to accomplish its function. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/18/2020 6:06:49 PM9/18/2020 6:06:49 PM/education/Booklets/The-Structures-of-Life/Pages/Home.aspx"><em>The Structures of Life</em The Structures of Life page 3 Molecular Structures structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3970https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{975CBFB7-871F-4D5C-8451-06C1200425BA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6997355213<em>E. coli</em> bacteria normally live harmlessly in our intestines, but some cause disease by making toxins. One of these toxins, called Shiga toxin (green), inactivates host ribosomes (purple) by mimicking their normal binding partners, the EF-Tu elongation factor (red) complexed with Phe-tRNAPhe (orange). <Br><Br> Find these in the RCSB Protein Data Bank: <a href="https://www.rcsb.org/structure/7U6V">Shiga toxin 2</a> (PDB entry 7U6V) and <a href="https://www.rcsb.org/structure/1TTT">Phe-tRNA</a> (PDB entry 1TTT). <Br><Br> More information about this work can be found in the <em>J. Biol. Chem.</em> paper <a href="https://www.jbc.org/article/S0021-9258(22)01238-8/fulltext">"Cryo-EM structure of Shiga toxin 2 in complex with the native ribosomal P-stalk reveals residues involved in the binding interaction"</a> by Kulczyk et. al. 2/13/2024 8:28:27 PM2/13/2024 8:28:27 PMarticle/S0021-9258(22)01238-8/fulltext">"Cryo-EM structure of Shiga toxin 2 in complex Kulczyk et al. determined a cryo-EM structure of Stx2a bound to the native ribosomal STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx56200https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F3B87863-A320-40EB-9AEA-C87F7BBEF203}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3438355779The chemical structure of the morphine molecule8/22/2020 4:44:39 PM8/22/2020 4:44:39 PMMorphine_structure__thumbnail_    Thumbnail 2 KB 6/3/2016 3:29 PM aamishral2 (NIH Morphine_structure_L    High 4772 KB 6/3/2016 3:29 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{6EE205B7-C53B-4A56-B1E5-DB767CF5273F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2342355495X-ray structure of a new DNA repair enzyme superfamily representative from the human gastrointestinal bacterium <i>Enterococcus faecalis</i>. European scientists used this structure to generate homologous structures. Featured as the May 2007 Protein Structure Initiative Structure of the Month.10/29/2020 2:46:36 PM10/29/2020 2:46:36 PMEuropean scientists used this structure to generate homologous structures Featured as the May 2007 Protein Structure Initiative Structure of the Month STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{985DEF74-B19F-428E-A73F-96B3A80C5557}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3406941Phenylalanine tRNA showing the anticodon (yellow) and the amino acid, phenylalanine (blue and red spheres). The structure of phenylalanine tRNA is described in this journal article: Kristensen O, Reshetnikova L, Nissen P, Siboska G, Thirup S, Nyborg J. FEBS Lett. 1996 Dec 9;399(1-2):59-62.12/23/2020 8:47:36 PM12/23/2020 8:47:36 PMType    Name    Media Type    File Size    Modified -tRNAPhe-highres_S    Low 37 KB 9/14/2016 11:42 AM Varkala, Venkat (NIH/NIGMS) [C Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4880https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{EF0971C4-B0FB-4781-9F31-720C0414208A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3606966In plants, as in animals, stem cells can transform into a variety of different cell types. The stem cells at the growing tip of this Arabidopsis plant will soon become flowers. Arabidopsis is frequently studied by cellular and molecular biologists because it grows rapidly (its entire life cycle is only 6 weeks), produces lots of seeds and has a genome that is easy to manipulate. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/22/2022 9:02:36 PM11/22/2022 9:02:36 PMType    Name    Media Type    File Size    Modified 5_topmid_Flower_cell_plant    Other 3073 KB 10/25/2020 7:49 PM Harris, Donald (NIH/NIGMS) [C Structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3770https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{69D49AC0-B619-4A4C-A1D9-072FB68B5234}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2484490NIGMS-funded researchers led by Roger Kornberg solved the structure of RNA polymerase II. This is the enzyme in mammalian cells that catalyzes the transcription of DNA into messenger RNA, the molecule that in turn dictates the order of amino acids in proteins. For his work on the mechanisms of mammalian transcription, Kornberg received the Nobel Prize in Chemistry in 2006.9/18/2020 5:05:13 PM9/18/2020 5:05:13 PMType    Name    Media Type    File Size    Modified RNA_pol_II_medium    Medium 1184 KB 6/3/2016 3:12 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4570https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2A10BFFD-1037-418C-890C-8D7FB32E4ED7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3295526Researchers use cluster analysis to study protein shape and function. Each green circle represents one potential shape of the protein mitoNEET. The longer the blue line between two circles, the greater the differences between the shapes. Most shapes are similar; they fall into three clusters that are represented by the three images of the protein. From a Rice University <a href=http://www.eurekalert.org/pub_releases/2012-01/ru-rus012612.php target="_blank">news release</a>. Graduate student Elizabeth Baxter and Patricia Jennings, professor of chemistry and biochemistry at UCSD, collaborated with José Onuchic, a physicist at Rice University, on this work.12/22/2020 10:54:21 PM12/22/2020 10:54:21 PMType    Name    Media Type    File Size    Modified Cluster_analysis_of_mysterious_protein_L    Low 46 KB 6/3/2016 3:26 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx5260https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{CD831F69-EC6F-4495-8D60-9CA97CADEEBB}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
35971089A study published in March 2012 used cryo-electron microscopy to determine the structure of the DNA replication origin recognition complex (ORC), a semi-circular, protein complex (yellow) that recognizes and binds DNA to start the replication process. The ORC appears to wrap around and bend approximately 70 base pairs of double stranded DNA (red and blue). Also shown is the protein Cdc6 (green), which is also involved in the initiation of DNA replication. Related to video <a href=http://images.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3307><i>3307</i></a> that shows the structure from different angles. From a Brookhaven National Laboratory <a href=http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=1391&template=Today target="_blank">news release</a>, "Study Reveals How Protein Machinery Binds and Wraps DNA to Start Replication." 10/19/2020 6:35:19 AM10/19/2020 6:35:19 AMThe light brown shading represents the structure obtained by cryo-EM The ribbon diagram structures came from X-ray crystallography and were superimposed on the cryo-EM structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx6170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{B3B34891-56E7-4C4C-AC4A-53B710F155A1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2338463Model of a member from the Tex protein family, which is implicated in transcriptional regulation and highly conserved in eukaryotes and prokaryotes. The structure shows significant homology to a human transcription elongation factor that may regulate multiple steps in mRNA synthesis.10/29/2020 2:37:40 PM10/29/2020 2:37:40 PMType    Name    Media Type    File Size    Modified burleyd    Thumbnail 7 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C Molecular Structures protein structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4160https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{35294316-7B85-4707-83F4-B824CBA718BB}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2341466Model of the enzyme aminopeptidase N from the human pathogen <i>Neisseria meningitidis</i>, which can cause meningitis epidemics. The structure provides insight on the active site of this important molecule.10/29/2020 2:43:00 PM10/29/2020 2:43:00 PMType    Name    Media Type    File Size    Modified 2341_joachimiak1_S    Low 133 KB 3/29/2019 1:43 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4560https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{C0E3C41D-D8EA-4EB0-92FA-CC970965AA6B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3489952To develop a system for studying cell motility in unnatrual conditions -- a microscope slide instead of the body -- Tom Roberts and Katsuya Shimabukuro at Florida State University disassembled and reconstituted the motility parts used by worm sperm cells.9/8/2020 11:09:41 PM9/8/2020 11:09:41 PMType    Name    Media Type    File Size    Modified Roberts_cool_image    High 36 KB 6/3/2016 3:30 PM aamishral2 (NIH/NIGMS) [C nih.gov> wrote: Dear Dr. Roberts STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx36160https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{56D4D731-F837-44AD-BCAE-9A46C68B1083}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3403938Disassembly of vasculature in kdr:GFP frogs following addition of 250 µM TBZ.12/23/2020 8:31:47 PM12/23/2020 8:31:47 PMType    Name    Media Type    File Size    Modified Disrupted_vascular_development_in_frog_embryos    High 4190 KB 6/3/2016 3:28 PM Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx2970https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{10F5BCA0-1B0C-4B6A-BE65-1D13C135E833}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
37201027This wreath represents the molecular structure of a protein, Cas4, which is part of a system, known as CRISPR, that bacteria use to protect themselves against viral invaders. The green ribbons show the protein's structure, and the red balls show the location of iron and sulfur molecules important for the protein's function. Scientists harnessed Cas9, a different protein in the bacterial CRISPR system, to create a gene-editing tool known as CRISPR-Cas9. Using this tool, researchers are able to study a range of cellular processes and human diseases more easily, cheaply and precisely. In December, 2015, Science magazine recognized the CRISPR-Cas9 gene-editing tool as the "breakthrough of the year." Read more about Cas4 in the December 2015 Biomedical Beat post <a href="https://biobeat.nigms.nih.gov/2015/12/cool-images-a-holiday-themed-collection/">A Holiday-Themed Image Collection</a>.12/3/2020 8:52:01 PM12/3/2020 8:52:01 PMType    Name    Media Type    File Size    Modified Cas4_PDB_4ic11_M    Medium 377 KB 6/3/2016 3:39 PM aamishral2 (NIH/NIGMS) [C Cas4 nuclease protein structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx55180https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2943035F-E71B-47B6-B359-C2925A36BC57}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
63521309This image shows how the CRISPR surveillance complex is disabled by two copies of anti-CRISPR protein AcrF1 (red) and one AcrF2 (light green). These anti-CRISPRs block access to the CRISPR RNA (green tube) preventing the surveillance complex from scanning and targeting invading viral DNA for destruction. 12/21/2020 5:09:58 PM12/21/2020 5:09:58 PMType    Name    Media Type    File Size    Modified CRISPR 2 of 2 NRAMM    High Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx34140https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{152D7892-75BF-4DA9-913D-B1FCC618DA85}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2386672Structure of sortase b from the bacterium <i>B. anthracis</i>, which causes anthrax. Sortase b is an enzyme used to rob red blood cells of iron, which the bacteria need to survive.10/29/2020 4:53:35 PM10/29/2020 4:53:35 PMType    Name    Media Type    File Size    Modified hi_Sortase_b_from_B_anthracis_L    Low 30 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3350https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{D46B5EDD-4F22-43BF-A896-E9934976DE8C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2378473Model of a protein, antigen 85B, that is the most abundant protein exported by <i>Mycobacterium tuberculosis</i>, which causes most cases of tuberculosis. Antigen 85B is involved in building the bacterial cell wall and is an attractive drug target. Based on its structure, scientists have suggested a new class of antituberculous drugs.10/29/2020 4:41:39 PM10/29/2020 4:41:39 PMType    Name    Media Type    File Size    Modified Molecular Structures drug development, model, protein structure string;#<DIV><img style='max-width:100px;max-height STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx4170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{B2306E63-5526-4111-87D2-099B1DDC2FD0}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2363355559The goal of the PSI is to determine the three-dimensional shapes of a wide range of proteins by solving the structures of representative members of each protein family found in nature. The collection of structures should serve as a valuable resource for biomedical research scientists.10/29/2020 4:12:18 PM10/29/2020 4:12:18 PMhi_gene_to_structure_M    Medium 17 KB 6/3/2016 3:09 PM aamishral2 (NIH/NIGMS) [C The collection of structures should serve as a valuable resource for biomedical research STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{5707B2E3-09B2-4FAE-824E-FD8FD64AF328}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
65721276The 3D single-molecule super-resolution reconstruction of the entire nuclear lamina in a HeLa cell was acquired using the TILT3D platform. TILT3D combines a tilted light sheet with point-spread function (PSF) engineering to provide a flexible imaging platform for 3D single-molecule super-resolution imaging in mammalian cells. <br> See <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6573">6573</a> for 3 seperate views of this structure.<br>12/22/2020 3:20:41 PM12/22/2020 3:20:41 PMType    Name    Media Type    File Size    Modified NuclearLamina_300dpi_M    Medium 117 KB 7/16/2020 5:42 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx33130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{D065B67F-284D-48AA-98C1-513E4A756EF1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36601173Ribbon diagram showing the structure of Ribonuclease P with tRNA.2/4/2020 8:55:06 PM2/4/2020 8:55:06 PMType    Name    Media Type    File Size    Modified Ribonuclease_P    High 468 KB 6/3/2016 3:38 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3150https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{97A0FB19-2CBE-4253-A201-601EC0520575}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6996355225A cross section of the measles virus in which six proteins (enlarged on the outside of the virus) work together to infect cells. The measles virus is extremely infectious; 9 out of 10 people exposed will contract the disease. Fortunately, an effective vaccine protects against infection. Portions of the proteins that have not been determined are shown with dots. <Br><Br> Learn more about the six proteins on PDB 101’s <a href="https://pdb101.rcsb.org/motm/231">Molecule of the Month: Measles Virus Proteins</a>. Structures are available for the ordered regions of nucleoprotein and phosphoprotein (PDB entries <a href="https://www.rcsb.org/structure/5E4V ">5E4V</a>, <a href="https://www.rcsb.org/structure/3ZDO">3ZDO</a>, <a href="https://www.rcsb.org/structure/1T6O">1T6O</a>), but the remaining regions are thought to form a flexible, random tangle. For a larger look at the measles virus, see <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6995">6995</a>. 2/12/2024 8:34:21 PM2/12/2024 8:34:21 PMSTS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx52170https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{408AE08B-F46D-452E-B215-B01E5030EF31}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3359870The receptor is shown bound to an antagonist, JDTic.12/23/2020 5:42:55 PM12/23/2020 5:42:55 PMType    Name    Media Type    File Size    Modified OPRK1_1300x1500_yelgreen_S    Low 57 KB 9/14/2016 11:37 AM Varkala, Venkat (NIH/NIGMS Molecular Structures STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx50100https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{946AAFF8-EC7E-424A-9FD3-5CBCB51E122F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
35841160This image shows a computer-generated, three-dimensional map of the rotavirus structure. This virus infects humans and other animals and causes severe diarrhea in infants and young children. By the age of five, almost every child in the world has been infected with this virus at least once. Scientists have found a vaccine against rotavirus, so in the United States there are very few fatalities, but in developing countries and in places where the vaccine is unavailable, this virus is responsible for more than 450,000 deaths each year.<Br><Br> The rotavirus comprises three layers: the outer, middle and inner layers. On infection, the outer layer is removed, leaving behind a "double-layered particle." Researchers have studied the structure of this double-layered particle with a transmission electron microscope. Many images of the virus at a magnification of ~50,000x were acquired, and computational analysis was used to combine the individual particle images into a three-dimensional reconstruction. <Br><Br>The image was rendered by Melody Campbell (PhD student at TSRI). Work that led to the 3D map was published in Campbell et al. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure. 2012;20(11):1823-8. PMCID: PMC3510009. <Br><Br>This image was part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.2/28/2024 4:48:57 PM2/28/2024 4:48:57 PMResearchers have studied the structure of this double-layered particle with a transmission This image shows a computer-generated, three-dimensional map of the rotavirus structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3480https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{38997347-01E8-4B63-97E7-3CD152CD4331}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2346661Model of a human protein associated with the adenylyl cyclase, an enzyme involved in intracellular signaling.10/29/2020 3:00:19 PM10/29/2020 3:00:19 PMType    Name    Media Type    File Size    Modified 2346_th_1k8f_S    Low 53 KB 3/29/2019 11:50 AM Constantinides, Stephen (NIH/NIGMS) [C protein structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3760https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{B6534242-F2E6-4D37-8A57-C9F8F5724860}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2385671Model based on X-ray crystallography of the structure of a small heat shock protein complex from the bacteria, <i>Methanococcus jannaschii</i>. <i>Methanococcus jannaschii</i> is an organism that lives at near boiling temperature, and this protein complex helps it cope with the stress of high temperature. Similar complexes are produced in human cells when they are "stressed" by events such as burns, heart attacks, or strokes. The complexes help cells recover from the stressful event.10/29/2020 4:52:21 PM10/29/2020 4:52:21 PMType    Name    Media Type    File Size    Modified hi_shsp_M    Medium 33 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C Molecular Structures protein structure STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx3450https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{40B67A58-1E58-4090-86D8-6F853DE4D2BA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131