Search Results

 

 

2417376This fruit fly expresses green fluorescent protein (GFP) in the same pattern as the period gene, a gene that regulates circadian rhythm and is expressed in all sensory neurons on the surface of the fly.8/6/2020 7:51:34 PM8/6/2020 7:51:34 PMType    Name    Media Type    File Size    Modified FlybyNight1_S    Low 11 KB 9/7/2016 5:33 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{03C5A6E6-05E4-4B1A-884E-53940CDDCD3D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2418377This delicate, birdlike projection is an immature seed of the <i>Arabidopsis</i> plant. The part in blue shows the cell that gives rise to the endosperm, the tissue that nourishes the embryo. The cell is expressing only the maternal copy of a gene called MEDEA. This phenomenon, in which the activity of a gene can depend on the parent that contributed it, is called genetic imprinting. In <i>Arabidopsis</i>, the maternal copy of MEDEA makes a protein that keeps the paternal copy silent and reduces the size of the endosperm. In flowering plants and mammals, this sort of genetic imprinting is thought to be a way for the mother to protect herself by limiting the resources she gives to any one embryo. Featured in the May 16, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-05-16/#1 target="_blank"><em>Biomedical Beat</em></a>.8/17/2020 7:59:57 PM8/17/2020 7:59:57 PMType    Name    Media Type    File Size    Modified genetic_imprinting_T    Thumbnail 4 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C In flowering plants and mammals, this sort of genetic imprinting is thought to be a way for STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{755171FE-A0AC-4D55-8F76-BC6554F6076A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6532392In the worm <i>C. elegans</i>, double-stranded RNA made in neurons can silence matching genes in a variety of cell types through the transport of RNA between cells. The head region of three worms that were genetically modified to express a fluorescent protein were imaged and the images were color-coded based on depth. The worm on the left lacks neuronal double-stranded RNA and thus every cell is fluorescent. In the middle worm, the expression of the fluorescent protein is silenced by neuronal double-stranded RNA and thus most cells are not fluorescent. The worm on the right lacks an enzyme that amplifies RNA for silencing. Surprisingly, the identities of the cells that depend on this enzyme for gene silencing are unpredictable. As a result, worms of identical genotype are nevertheless random mosaics for how the function of gene silencing is carried out. For more, see <a href="https://academic.oup.com/nar/article/47/19/10059/5563947">journal article</a> and <a href="https://umdrightnow.umd.edu/news/umd-scientists-discover-hidden-differences-may-help-cells-evade-drug-therapy">press release.</a> Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6534">6534</a>.12/21/2020 7:45:16 PM12/21/2020 7:45:16 PMType    Name    Media Type    File Size    Modified The_Three_Pharingos_4_flipped_Thumbnail    Thumbnail 94 KB 12/17/2019 2:28 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{818BAE61-BA6A-412E-9A1A-F5BEE4D08EA6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6534393In the worm <i>C. elegans</i>, double-stranded RNA made in neurons can silence matching genes in a variety of cell types through the transport of RNA between cells. The head region of three worms that were genetically modified to express a fluorescent protein were imaged and the images were color-coded based on depth. The worm on the left lacks neuronal double-stranded RNA and thus every cell is fluorescent. In the middle worm, the expression of the fluorescent protein is silenced by neuronal double-stranded RNA and thus most cells are not fluorescent. The worm on the right lacks an enzyme that amplifies RNA for silencing. Surprisingly, the identities of the cells that depend on this enzyme for gene silencing are unpredictable. As a result, worms of identical genotype are nevertheless random mosaics for how the function of gene silencing is carried out. For more, see <a href="https://academic.oup.com/nar/article/47/19/10059/5563947">journal article</a> and <a href="https://umdrightnow.umd.edu/news/umd-scientists-discover-hidden-differences-may-help-cells-evade-drug-therapy">press release.</a> Related to image <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6532">6532</a>.12/21/2020 7:47:07 PM12/21/2020 7:47:07 PMType    Name    Media Type    File Size    Modified The_Three_Pharingos_16colored_Thumbnail    Thumbnail 91 KB 12/17/2019 2:58 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{41A91E05-BA3D-46C3-9B56-0838552A4F30}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3442410These images show three stages of cell division in Xenopus XL177 cells, which are derived from tadpole epithelial cells. They are (from top): metaphase, anaphase and telophase. The microtubules are green and the chromosomes are blue. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3443">image 3443</a>.8/22/2020 5:25:02 PM8/22/2020 5:25:02 PMType    Name    Media Type    File Size    Modified mitotic1_M    Medium 94 KB 6/3/2016 3:29 PM aamishral2 (NIH/NIGMS) [C These images show three stages of cell division in Xenopus XL177 cells, which are derived from tadpole STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{385F83B3-C956-487B-9A75-4C353F0A940E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3443411These images show frog cells in interphase. The cells are Xenopus XL177 cells, which are derived from tadpole epithelial cells. The microtubules are green and the chromosomes are blue. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3442">image 3442</a>.8/22/2020 5:30:27 PM8/22/2020 5:30:27 PMType    Name    Media Type    File Size    Modified interphs_M    Medium 225 KB 6/3/2016 3:29 PM aamishral2 (NIH/NIGMS) [C The microtubules are green and the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{5CE69473-3A28-4887-B8C1-AA71A16B23A9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2474422Analysis of 68 million-year-old collagen molecule fragments preserved in a <i>T. rex</i> femur confirmed what paleontologists have said for decades: Dinosaurs are close relatives of chickens, ostriches, and to a lesser extent, alligators. A Harvard University research team, including NIGMS-supported postdoctoral research fellow Chris Organ, used sophisticated statistical and computational tools to compare the ancient protein to ones from 21 living species. Because evolutionary processes produce similarities across species, the methods and results may help illuminate other areas of the evolutionary tree. Featured in the May 21, 2008 <a href=http://publications.nigms.nih.gov/biobeat/08-05-21/index.html#3 target="_blank"><i>Biomedical Beat</i></a>.8/21/2020 9:14:58 PM8/21/2020 9:14:58 PMType    Name    Media Type    File Size    Modified 2474_evolutionary_tree_S    Low 54 KB 3/12/2019 11:54 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{5759E0B6-2126-45A6-A95C-0758FC271B96}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2475423This microscopic image shows a chromatin fiber--a DNA molecule bound to naturally occurring proteins.8/21/2020 9:18:27 PM8/21/2020 9:18:27 PMType    Name    Media Type    File Size    Modified fiberinset_M    Medium 37 KB 6/3/2016 3:11 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7EACD560-633F-4985-82BC-9B2BA13A154E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2483424This image represents the structure of TrpRS, a novel member of the tryptophanyl tRNA-synthetase family of enzymes. By helping to link the amino acid tryptophan to a tRNA molecule, TrpRS primes the amino acid for use in protein synthesis. A cluster of iron and sulfur atoms (orange and red spheres) was unexpectedly found in the anti-codon domain, a key part of the molecule, and appears to be critical for the function of the enzyme. TrpRS was discovered in Thermotoga maritima, a rod-shaped bacterium that flourishes in high temperatures. Credit: Joint Center for Structural Genomics9/18/2020 5:01:23 PM9/18/2020 5:01:23 PMType    Name    Media Type    File Size    Modified TrpRS_S    Low 155 KB 8/24/2016 3:00 PM Varkala, Venkat (NIH/NIGMS) [C This image represents the structure of STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{546A5303-9DBB-4FE5-9A6A-E4A616B84B22}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2484425NIGMS-funded researchers led by Roger Kornberg solved the structure of RNA polymerase II. This is the enzyme in mammalian cells that catalyzes the transcription of DNA into messenger RNA, the molecule that in turn dictates the order of amino acids in proteins. For his work on the mechanisms of mammalian transcription, Kornberg received the Nobel Prize in Chemistry in 2006.9/18/2020 5:05:13 PM9/18/2020 5:05:13 PMType    Name    Media Type    File Size    Modified RNA_pol_II_thumb    Thumbnail 5 KB 6/3/2016 3:12 PM aamishral2 (NIH/NIGMS) [C David Bushnell (bushnell@stanford.edu) gave credit line and said: "You have STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{2A10BFFD-1037-418C-890C-8D7FB32E4ED7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3445429This image of a mammalian epithelial cell, captured in metaphase, was the winning image in the high- and super-resolution microscopy category of the 2012 GE Healthcare Life Sciences Cell Imaging Competition. The image shows microtubules (red), kinetochores (green) and DNA (blue). The DNA is fixed in the process of being moved along the microtubules that form the structure of the spindle. The image was taken using the DeltaVision OMX imaging system, affectionately known as the "OMG" microscope, and was displayed on the NBC screen in New York's Times Square during the weekend of April 20-21, 2013. More information about the image is in a <em><a href="http://newsinfo.iu.edu/news/page/normal/23885.html">news release</a></em> from Indiana University and a NIH Director's <em><a href="http://directorsblog.nih.gov/omg-microscope-lives-up-to-its-name/">blog post</a></em>. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/22/2022 7:47:14 PM11/22/2022 7:47:14 PMType    Name    Media Type    File Size    Modified 20120731_29_004_JSTOUT_S    Low 13 KB 8/30/2016 12:43 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{05E778D9-EC50-4DE0-B522-B3B83DC89C36}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6465450This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. This is the first frame in a series of five. The CRISPR system has two components joined together: a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence) and a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA). For an explanation and overview of the CRISPR-Cas9 system, see the NIGMS Biomedical Beat blog entry, <a href="https://biobeat.nigms.nih.gov/2014/09/field-focus-precision-gene-editing-with-crispr/">Field Focus: Precision Gene Editing with CRISPR</a> and the iBiology video, <a href="http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html">Genome Engineering with CRISPR-Cas9: Birth of a Breakthrough Technology</a>.12/21/2020 5:33:13 PM12/21/2020 5:33:13 PMType    Name    Media Type    File Size    Modified CRISPR_Frame_1_S    Low 57 KB 3/12/2019 2:56 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{9CD8CA2C-808C-4856-BC00-0D7F441C6B90}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6486451This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. This is the second frame in a series of five. The CRISPR system has two components joined together: a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence) and a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA). For an explanation and overview of the CRISPR-Cas9 system, see the NIGMS Biomedical Beat blog entry, <a href="https://biobeat.nigms.nih.gov/2014/09/field-focus-precision-gene-editing-with-crispr/">Field Focus: Precision Gene Editing with CRISPR</a> and the iBiology video, <a href="http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html">Genome Engineering with CRISPR-Cas9: Birth of a Breakthrough Technology</a>. 12/21/2020 5:33:49 PM12/21/2020 5:33:49 PMType    Name    Media Type    File Size    Modified CRISPR_Frame_2_thumbnail_T    Thumbnail 89 KB 3/12/2019 3:01 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{90C1BD05-3BAF-4619-9718-3795F00D5D96}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6487452This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. This is the third frame in a series of five. The CRISPR system has two components joined together: a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence) and a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA). For an explanation and overview of the CRISPR-Cas9 system, see the NIGMS Biomedical Beat blog entry, <a href="https://biobeat.nigms.nih.gov/2014/09/field-focus-precision-gene-editing-with-crispr/">Field Focus: Precision Gene Editing with CRISPR</a> and the iBiology video, <a href="http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html">Genome Engineering with CRISPR-Cas9: Birth of a Breakthrough Technology</a>.12/21/2020 5:34:40 PM12/21/2020 5:34:40 PMType    Name    Media Type    File Size    Modified CRISPR_Frame_3_thumbnail_T    Thumbnail 69 KB 3/12/2019 3:04 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{9EA08454-BE86-4613-AF3C-9D3D96BEEF18}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6488453This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. This is the fourth frame in a series of five. The CRISPR system has two components joined together: a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence) and a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA). For an explanation and overview of the CRISPR-Cas9 system, see the NIGMS Biomedical Beat blog entry, <a href="https://biobeat.nigms.nih.gov/2014/09/field-focus-precision-gene-editing-with-crispr/">Field Focus: Precision Gene Editing with CRISPR</a> and the iBiology video, <a href="http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html">Genome Engineering with CRISPR-Cas9: Birth of a Breakthrough Technology</a>.12/21/2020 5:35:30 PM12/21/2020 5:35:30 PMType    Name    Media Type    File Size    Modified CRISPR_Frame_4_thumbnail_T    Thumbnail 75 KB 3/12/2019 3:07 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3323E1F7-EAF1-418F-9117-FEA017C431B2}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6489454This illustration shows, in simplified terms, how the CRISPR-Cas9 system can be used as a gene-editing tool. This is the fifthframe in a series of five. The CRISPR system has two components joined together: a finely tuned targeting device (a small strand of RNA programmed to look for a specific DNA sequence) and a strong cutting device (an enzyme called Cas9 that can cut through a double strand of DNA). For an explanation and overview of the CRISPR-Cas9 system, see the NIGMS Biomedical Beat blog entry, <a href="https://biobeat.nigms.nih.gov/2014/09/field-focus-precision-gene-editing-with-crispr/">Field Focus: Precision Gene Editing with CRISPR</a> and the iBiology video, <a href="http://www.ibiology.org/ibiomagazine/jennifer-doudna-genome-engineering-with-crispr-cas9-birth-of-a-breakthrough-technology.html">Genome Engineering with CRISPR-Cas9: Birth of a Breakthrough Technology</a>.12/21/2020 5:37:03 PM12/21/2020 5:37:03 PMType    Name    Media Type    File Size    Modified CRISPR_Frame_5_thumbnail_T    Thumbnail 51 KB 3/12/2019 3:10 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3AEE89CD-E938-4D4F-9E5A-4555CDBCFA6E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6503455This image capture shows how a single gene, STM, plays a starring role in plant development. This gene acts like a molecular fountain of youth, keeping cells ever-young until it’s time to grow up and commit to making flowers and other plant parts. Because of its ease of use and low cost, <i>Arabidopsis</i> is a favorite model for scientists to learn the basic principles driving tissue growth and regrowth for humans as well as the beautiful plants outside your window. Image captured from video Watch Flowers Spring to Life, featured in the <a href="https://directorsblog.nih.gov/2019/04/25/watch-flowers-spring-to-life/">NIH Director's Blog: Watch Flowers Spring to Life.</a> 10/7/2021 5:50:16 PM10/7/2021 5:50:16 PMType    Name    Media Type    File Size    Modified HIRES-Flower formation Elliot Meyerowitz2019    High 1063 KB 4/26/2019 8:58 AM Constantinides, Stephen (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7E5FE5A7-F34F-4777-97B6-494D62714E16}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2426459The structure of a gene-regulating zinc finger protein bound to DNA.8/17/2020 9:31:43 PM8/17/2020 9:31:43 PMType    Name    Media Type    File Size    Modified DesignedZF    High 595 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{05B06D12-30DC-46F0-97A0-41AAFF3B328B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2429461The cytoskeleton (green) and DNA (purple) are highlighed in these cells by immunofluorescence.8/17/2020 9:36:09 PM8/17/2020 9:36:09 PMType    Name    Media Type    File Size    Modified Wittmann2_M    Medium 284 KB 9/7/2016 3:05 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3A889D00-8849-4CED-A940-48E94DD31348}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3407470A LincRNA molecule, shown in red, serves as a scaffold for gene regulatory proteins, shown in grey. The DNA is represented as a grey double helix.12/23/2020 8:50:59 PM12/23/2020 8:50:59 PMType    Name    Media Type    File Size    Modified 3407_LinkRNA1_S    Low 50 KB 3/28/2019 4:29 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{61D7873D-7170-4911-A06C-ABB1E0E53011}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2443482This map paints a colorful portrait of human genetic variation around the world. Researchers analyzed the DNA of 485 people and tinted the genetic types in different colors to produce one of the most detailed maps of its kind ever made. The map shows that genetic variation decreases with increasing distance from Africa, which supports the idea that humans originated in Africa, spread to the Middle East, then to Asia and Europe, and finally to the Americas. The data also offers a rich resource that scientists could use to pinpoint the genetic basis of diseases prevalent in diverse populations. Featured in the March 19, 2008, issue of <a href=http://publications.nigms.nih.gov/biobeat/08-03-19/index.html target="_blank"><em>Biomedical Beat</em></a>.8/19/2020 2:47:57 PM8/19/2020 2:47:57 PMType    Name    Media Type    File Size    Modified Researchers analyzed the DNA of 485 people and tinted the genetic types in different colors to produce one of the most detailed maps of its STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{65A6E7D0-EABC-412A-9154-D7109715B67E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2455488A team of chemists and physicists used nanotechnology and DNA's ability to self-assemble with matching RNA to create a new kind of chip for measuring gene activity. When RNA of a gene of interest binds to a DNA tile (gold squares), it creates a raised surface (white areas) that can be detected by a powerful microscope. This nanochip approach offers manufacturing and usage advantages over existing gene chips and is a key step toward detecting gene activity in a single cell. Featured in the February 20, 2008, issue of <a href=http://publications.nigms.nih.gov/biobeat/08-02-20/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/20/2020 5:51:20 PM8/20/2020 5:51:20 PMType    Name    Media Type    File Size    Modified 2455_Gold_gene_S    Low 127 KB 3/29/2019 11:27 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{1D011269-3AA9-44C4-8D58-702C27B5F5B6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2509514Nucleotides in DNA are copied into RNA, where they are read three at a time to encode the amino acids in a protein. Many parts of a protein fold as the amino acids are strung together. See image 2510 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.1/27/2022 3:39:21 PM1/27/2022 3:39:21 PMType    Name    Media Type    File Size    Modified The_Genetic_Code_S    Low 20 KB 7/27/2016 11:34 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3705D241-4A22-4929-ADC4-2EBEA5C0FFA6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3484516New research shows telomeres moving to the outer edge of the nucleus after cell division, suggesting these caps that protect chromosomes also may play a role in organizing DNA.8/31/2020 5:23:06 AM8/31/2020 5:23:06 AMType    Name    Media Type    File Size    Modified telomere    Other 2889 KB 9/26/2020 10:17 PM Harris, Donald (NIH/NIGMS) [C We would like to use the image associated STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{5E285139-2BB5-4327-87D3-392633740F52}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3486517Two healthy cells (bottom, left) enter into apoptosis (bottom, center) but spring back to life after a fatal toxin is removed (bottom, right; top).9/8/2020 10:48:30 PM9/8/2020 10:48:30 PMType    Name    Media Type    File Size    Modified 3486_ApoptosisRev_S    Low 69 KB 3/28/2019 4:28 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{64ABA51E-60CB-4F0E-9323-84CF44A836DE}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6611528Circadian rhythms are physical, mental, and behavioral changes that follow a 24-hour cycle. Typical circadian rhythms lead to high energy during the middle of the day (10 a.m. to 1 p.m.) and an afternoon slump. At night, circadian rhythms cause the hormone melatonin to rise, making a person sleepy. Learn more in NIGMS’ circadian rhythms <a href="https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms.aspx">fact sheet</a>. See <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6612">6612</a> for the Spanish version of this infographic. 2/16/2021 3:16:55 PM2/16/2021 3:16:55 PMType    Name    Media Type    File Size    Modified CR_TeenTimeline_Opt3B_M    Medium 343 KB 2/12/2021 9:29 AM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{824D535B-F568-41B6-99E0-0EFFC580F9A2}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6612529Los ritmos circadianos son cambios físicos, mentales y conductuales que siguen un ciclo de 24 horas. Los ritmos circadianos típicos conducen a un nivel alto de energía durante la mitad del día (de 10 a.m. a 1 p.m.) y un bajón por la tarde. De noche, los ritmos circadianos hacen que la hormona melatonina aumente, lo que hace que la persona se sienta somnolienta. Obtenga más información en <a href="https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms-spanish.aspx">la hoja informativa</a> sobre ritmos circadianos del NIGMS. Vea <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6611">6611</a> para la versión en inglés de esta infografía. 2/16/2021 3:10:37 PM2/16/2021 3:10:37 PMType    Name    Media Type    File Size    Modified CR_TimelineSPANISH_Opt3 SPANISH_M    Medium 414 KB 2/12/2021 9:36 AM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{FFD1502D-963E-45D8-96C9-857661978201}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6613530Circadian rhythms are physical, mental, and behavioral changes that follow a 24-hour cycle. Circadian rhythms are influenced by light and regulated by the brain’s suprachiasmatic nucleus (SCN), sometimes referred to as a master clock. Learn more in NIGMS’ circadian rhythms <a href="https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms.aspx">fact sheet</a>. See <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6614">6614 </a> for the Spanish version of this infographic. 2/16/2021 3:13:58 PM2/16/2021 3:13:58 PMType    Name    Media Type    File Size    Modified CR_BrainSIZED_M    Medium 28 KB 2/12/2021 9:40 AM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{74B01AF7-ADC8-44ED-B590-7ACFD68AA4B0}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6755548Insect brains, like the honeybee brain shown here, are very different in shape from human brains. Despite that, bee and human brains have a lot in common, including many of the genes and neurochemicals they rely on in order to function. The bright-green spots in this image indicate the presence of tyrosine hydroxylase, an enzyme that allows the brain to produce dopamine. Dopamine is involved in many important functions, such as the ability to experience pleasure. This image was captured using confocal microscopy.9/23/2021 3:05:46 PM9/23/2021 3:05:46 PMType    Name    Media Type    File Size    Modified IGB Bee Brain Robinson Lab_M    Medium 545 KB 4/6/2021 12:27 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{A4B72739-220C-4865-ADD4-F79CA8848067}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6769556A mosquito larva with genes edited by CRISPR. The red-orange glow is a fluorescent protein used to track the edits. This species of mosquito, <em>Culex quinquefasciatus</em>, can transmit West Nile virus, Japanese encephalitis virus, and avian malaria, among other diseases. The researchers who took this image developed a gene-editing toolkit for <em>Culex quinquefasciatus</em> that could ultimately help stop the mosquitoes from spreading pathogens. The work is described in the <em>Nature Communications</em> paper "<a href=https://www.nature.com/articles/s41467-021-23239-0>Optimized CRISPR tools and site-directed transgenesis towards gene drive development in <em>Culex quinquefasciatus</em> mosquitoes</a>" by Feng et al. Related to image <a href=https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6770>6770</a> and video <a href=https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6771>6771</a>. 7/6/2021 7:00:39 PM7/6/2021 7:00:39 PMType    Name    Media Type    File Size    Modified MosquitoLarva_S    Low 5 KB 6/27/2021 9:26 PM Dolan, Lauren (NIH/NIGMS) [C The work is described in the <em STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{A8C5E363-3325-42F7-9166-04FB7C951AB9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2539561The long, stringy DNA that makes up genes is spooled within chromosomes inside the nucleus of a cell. (Note that a gene would actually be a much longer stretch of DNA than what is shown here.) See image 2540 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/9/2020 4:50:10 PM10/9/2020 4:50:10 PMType    Name    Media Type    File Size    Modified Chromosome_inside_Nucleus_S    Low 52 KB 9/7/2016 11:58 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7EA533B3-3BCA-4F3B-85EF-5E696DF3853F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2540562The long, stringy DNA that makes up genes is spooled within chromosomes inside the nucleus of a cell. (Note that a gene would actually be a much longer stretch of DNA than what is shown here.) Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:51:04 PM3/4/2022 7:51:04 PMType    Name    Media Type    File Size    Modified Chromosome_inside_Nucleus_with_labels_S    Low 55 KB 9/7/2016 12:00 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7D7E82F3-ECFE-436C-A8DD-0FC599388E63}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3475583Georgia Tech associate professor Hang Lu holds a microfluidic chip that is part of a system that uses artificial intelligence and cutting-edge image processing to automatically examine large number of nematodes used for genetic research.8/31/2020 4:16:30 AM8/31/2020 4:16:30 AMType    Name    Media Type    File Size    Modified automated-worm-sorter146_L_thumbnail    Thumbnail 24 KB 6/3/2016 3:30 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{4D59B2F6-D454-4F1E-8259-CD2F171FD480}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2510599The genetic code in DNA is transcribed into RNA, which is translated into proteins with specific sequences. During transcription, nucleotides in DNA are copied into RNA, where they are read three at a time to encode the amino acids in a protein. Many parts of a protein fold as the amino acids are strung together. See image 2509 for an unlabeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.1/27/2022 3:38:08 PM1/27/2022 3:38:08 PMType    Name    Media Type    File Size    Modified The_Genetic_Code_with_labels_M    Medium 84 KB 7/27/2016 11:33 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{4B5D22A1-CBB2-457C-928D-C7364B01FC4B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2513602HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2514">2514</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2515">2515</a> for labeled versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:26:31 PM9/25/2020 4:26:31 PMType    Name    Media Type    File Size    Modified 2513thumb    Thumbnail 44 KB 6/3/2016 3:12 PM aamishral2 (NIH/NIGMS) [C HIV is a retrovirus, a type of virus STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C07EF89B-BA3A-4BD2-979B-95B3B2A80BF9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2514603HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2513">2513</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2515">2515</a> for other versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:29:40 PM9/25/2020 4:29:40 PMType    Name    Media Type    File Size    Modified 2514_Life_of_an_AIDS_Virus_with_labels_T    Thumbnail 117 KB 4/19/2019 12:29 PM Constantinides, Stephen (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7C26D3D2-FF70-420C-A0BC-1E2725806E59}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2515604HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2513">2513</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2514">2514</a> for other versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:31:12 PM9/25/2020 4:31:12 PMType    Name    Media Type    File Size    Modified 2515_Life_of_an_AIDS_Virus_with_labels_and_stages_T    Thumbnail 128 KB 4/19/2019 12:30 PM Constantinides STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{E2EE0E54-49B2-4B79-BBC9-C7F4E1589956}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3492607This tropical scene, reminiscent of a postcard from Key West, is actually a petri dish containing an artistic arrangement of genetically engineered bacteria. The image showcases eight of the fluorescent proteins created in the laboratory of the late Roger Y. Tsien, a cell biologist at the University of California, San Diego. Tsien, along with Osamu Shimomura of the Marine Biology Laboratory and Martin Chalfie of Columbia University, share the 2008 Nobel Prize in chemistry for their work on green fluorescent protein-a naturally glowing molecule from jellyfish that has become a powerful tool for studying molecules inside living cells.9/9/2020 1:51:26 AM9/9/2020 1:51:26 AMType    Name    Media Type    File Size    Modified cool_image_colored_proteins1_M    Medium 103 KB 8/30/2016 12:30 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{82113CDA-7154-491B-8100-C43A4925AAC1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3493608Like a watch wrapped around a wrist, a special enzyme encircles the double helix to repair a broken strand of DNA. Without molecules that can mend such breaks, cells can malfunction, die, or become cancerous. Related to image <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=131">2330</a>. 9/9/2020 2:16:07 AM9/9/2020 2:16:07 AMType    Name    Media Type    File Size    Modified GDB--DNA_unwinding_recolored    Other 11273 KB 9/26/2020 10:40 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F2218257-80D3-4C95-A593-3F1D0092301B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6614615Los ritmos circadianos son cambios físicos, mentales y de comportamiento que siguen un ciclo de 24 horas. Los ritmos circadianos se ven influenciados por la luz y están regulados por el núcleo supraquiasmático del cerebro, a veces denominado el reloj principal. Obtenga más información en <a href="https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms-spanish.aspx">la hoja informativa</a> sobre ritmos circadianos del NIGMS. Vea <a href="https://images.nigms.nih.gov/pages/DetailPage.aspx?imageid2=6613">6613</a> para la versión en inglés de esta infografía. 2/16/2021 3:15:48 PM2/16/2021 3:15:48 PMType    Name    Media Type    File Size    Modified CR_Brain_Spanish_M    Medium 27 KB 2/12/2021 9:45 AM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{18FEB071-FF12-43AF-81D3-880E37E4767C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2541630DNA consists of two long, twisted chains made up of nucleotides. Each nucleotide contains one base, one phosphate molecule, and the sugar molecule deoxyribose. The bases in DNA nucleotides are adenine, thymine, cytosine, and guanine. See image 2542 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 4:08:27 PM10/16/2020 4:08:27 PMType    Name    Media Type    File Size    Modified Nucleotides_S    Low 63 KB 8/24/2016 3:55 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{0968D0F4-3202-4345-AA11-D0A735FCEFB7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2542631DNA consists of two long, twisted chains made up of nucleotides. Each nucleotide contains one base, one phosphate molecule, and the sugar molecule deoxyribose. The bases in DNA nucleotides are adenine, thymine, cytosine, and guanine. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:49:23 PM3/4/2022 7:49:23 PMType    Name    Media Type    File Size    Modified Nucleotides_with_labels_S    Low 69 KB 8/24/2016 5:05 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{D1C5A0E0-9E8D-476E-BB68-F21AA185C7FA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
3567639Viral RNA (red) in an RSV-infected cell. More information about the research behind this image can be found in a <a href="http://biobeat.nigms.nih.gov/2014/01/cool-image-visualizing-viral-activity/">Biomedical Beat Blog posting</a> from January 2014.10/5/2020 5:40:18 AM10/5/2020 5:40:18 AMType    Name    Media Type    File Size    Modified RSV-infected_cell_L    Low 11 KB 6/3/2016 3:32 PM aamishral2 (NIH/NIGMS) [C You are welcome to use the image (attached is a 300 dpi TIFF) with the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C036CB5E-A217-4790-A046-FB98CA16504C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2551648Genes are often interrupted by stretches of DNA (introns, blue) that do not contain instructions for making a protein. The DNA segments that do contain protein-making instructions are known as exons (green). Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:42:54 PM3/4/2022 7:42:54 PMType    Name    Media Type    File Size    Modified Introns_with_labels_S    Low 49 KB 8/25/2016 5:48 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{2B860C09-0CE0-4F56-91E7-DF5B44EB2A6D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2552649Arranging exons in different patterns, called alternative splicing, enables cells to make different proteins from a single gene. See image 2553 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 5:23:14 PM10/23/2020 5:23:14 PMType    Name    Media Type    File Size    Modified Alternative_Splicing_S    Low 42 KB 8/25/2016 5:50 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{476C387D-344E-4357-BAC4-F2CA9D225981}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2553650Arranging exons in different patterns, called alternative splicing, enables cells to make different proteins from a single gene. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:39:29 PM3/4/2022 7:39:29 PMType    Name    Media Type    File Size    Modified Alternative_Splicing_with_labels_S    Low 48 KB 8/25/2016 5:53 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{316509E3-8F9C-4A42-B17E-9024C0A51F6D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2554651Ribonucleic acid (RNA) has a sugar-phosphate backbone and the bases adenine (A), cytosine (C), guanine (G), and uracil (U). See image 2554 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:36:33 PM3/4/2022 7:36:33 PMType    Name    Media Type    File Size    Modified 2554_RNA_S    Low 97 KB 3/29/2019 11:20 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{53E4AF8E-ED64-4744-90A7-3C71D80809DF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2555652Ribonucleic acid (RNA) has a sugar-phosphate backbone and the bases adenine (A), cytosine (C), guanine (G), and uracil (U). Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.3/4/2022 7:37:07 PM3/4/2022 7:37:07 PMType    Name    Media Type    File Size    Modified 2555_RNA_with_T    Thumbnail 110 KB 3/29/2019 11:20 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{A42C6CC8-6E99-4F4F-A1B1-D72DEB4B23E1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2556653The enzyme Dicer generates microRNAs by chopping larger RNA molecules into tiny Velcro®-like pieces. MicroRNAs stick to mRNA molecules and prevent the mRNAs from being made into proteins. See image 2557 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 7:22:08 PM10/23/2020 7:22:08 PMType    Name    Media Type    File Size    Modified Dicer_S    Low 36 KB 9/7/2016 2:23 PM Varkala, Venkat (NIH/NIGMS) [C The enzyme Dicer generates microRNAs by chopping larger RNA molecules into tiny Velcro STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F0B3325E-7A71-40BC-9580-6420C68D4EAC}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
2557654The enzyme Dicer generates microRNAs by chopping larger RNA molecules into tiny Velcro®-like pieces. MicroRNAs stick to mRNA molecules and prevent the mRNAs from being made into proteins. See image 2556 for an unlabeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 7:22:50 PM10/23/2020 7:22:50 PMType    Name    Media Type    File Size    Modified S    Low 43 KB 9/7/2016 2:21 PM Varkala, Venkat (NIH/NIGMS) [C National Institute of General Medical Sciences STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{B637BA56-D478-4491-84B1-55D6B0C0C19B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131