Search Results

 

 

101039479A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and are separating to form the cores of two new cells.8/6/2020 3:41:28 PM8/6/2020 3:41:28 PMType    Name    Media Type    File Size    Modified lilymit10_S    Low 15 KB 9/8/2016 2:24 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible and are separating to form STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{13C7DFA2-E544-4331-9DCE-2395262F2E91}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101139483A light microscope image of cells from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and have separated into the opposite sides of a dividing cell.8/6/2020 5:03:09 PM8/6/2020 5:03:09 PMType    Name    Media Type    File Size    Modified lilymit11_S    Low 12 KB 9/8/2016 2:26 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible and have separated into the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{6FEE2F71-D4CD-4B52-BF2B-BC2252AF9868}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101239486A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue.8/14/2020 5:42:05 PM8/14/2020 5:42:05 PMType    Name    Media Type    File Size    Modified lilymit2_S    Low 13 KB 9/8/2016 2:28 PM Varkala, Venkat (NIH/NIGMS) [C Andrew S. Bajer, University of Oregon STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C8B137B6-B281-434D-A7DA-DDF119C39F2F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101339488A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue.8/6/2020 5:15:14 PM8/6/2020 5:15:14 PMType    Name    Media Type    File Size    Modified lilymit3_S    Low 10 KB 9/8/2016 2:29 PM Varkala, Venkat (NIH/NIGMS) [C Andrew S. Bajer, University of Oregon STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{FD80F5EE-09EC-4AD2-B64C-DD18486A7B3D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101439489A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue.8/6/2020 5:17:00 PM8/6/2020 5:17:00 PMType    Name    Media Type    File Size    Modified lilymit4_S    Low 13 KB 9/8/2016 2:31 PM Varkala, Venkat (NIH/NIGMS) [C Andrew S. Bajer, University of Oregon STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{309B5B6A-0FB8-4D2F-8587-E48F1460DAC0}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101539490A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible.8/6/2020 5:18:50 PM8/6/2020 5:18:50 PMType    Name    Media Type    File Size    Modified lilymit5_S    Low 13 KB 9/8/2016 2:34 PM Varkala, Venkat (NIH/NIGMS) [C Andrew S. Bajer, University of Oregon STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{4DD43D2A-0C02-4493-8C1D-98468D1E78BB}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101639491A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and are starting to line up.8/6/2020 5:21:28 PM8/6/2020 5:21:28 PMType    Name    Media Type    File Size    Modified lilymit6_S    Low 13 KB 9/8/2016 2:35 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible and are starting to line up STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{AC000F80-45A5-4619-A533-FA820938185C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101739492A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and have lined up in the middle of the dividing cell.8/6/2020 5:25:47 PM8/6/2020 5:25:47 PMType    Name    Media Type    File Size    Modified lilymit7_S    Low 10 KB 9/8/2016 2:37 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible and have lined up in the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7950E1EF-8698-4948-87BF-364CE02E8679}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101839493A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible near the end of a round of mitosis.8/6/2020 5:26:29 PM8/6/2020 5:26:29 PMType    Name    Media Type    File Size    Modified lilymit12_S    Low 11 KB 9/8/2016 2:38 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible near the end of a round of STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{EC39C1AF-4CC5-493C-9E66-30CBA1DB3A53}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
101939494A light microscope image of cells from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, two cells have formed after a round of mitosis.8/6/2020 5:28:07 PM8/6/2020 5:28:07 PMType    Name    Media Type    File Size    Modified lilymit13_S    Low 13 KB 9/8/2016 3:03 PM Varkala, Venkat (NIH/NIGMS) [C The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F7A7A261-CDEE-485E-8F24-D1923EE9C099}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
102139495A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and lined up.8/14/2020 5:44:12 PM8/14/2020 5:44:12 PMType    Name    Media Type    File Size    Modified lilymit8_S    Low 12 KB 9/8/2016 2:40 PM Varkala, Venkat (NIH/NIGMS) [C Andrew S. Bajer, University of Oregon STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{043568AC-3AD1-48FD-97C9-60AB01D5A133}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
102239496A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and are starting to separate to form two new cells.8/14/2020 5:50:57 PM8/14/2020 5:50:57 PMType    Name    Media Type    File Size    Modified lilymit9_S    Low 13 KB 9/8/2016 2:41 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible and are starting to separate STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{AF745663-6F5E-464D-BEF5-704A80B8E28D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
105839504A light microscope image shows the chromosomes, stained dark blue, in a dividing cell of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones.8/14/2020 6:21:48 PM8/14/2020 6:21:48 PMType    Name    Media Type    File Size    Modified F04101GMS_blue_cell_source_M    Medium 66 KB 9/2/2020 8:17 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{545624AF-29A9-4F44-905B-64054680F619}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
131439571Duplicated pair of chromosomes have exchanged material. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 7:53:05 PM10/28/2020 7:53:05 PMType    Name    Media Type    File Size    Modified ITC_CrossOver_after_Copy_M    Medium 30 KB 10/28/2020 3:52 PM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{54FE31A4-F0E6-4349-911B-1337B703DD69}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
131539572Duplicated pair of chromosomes lined up and ready to cross over. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 7:55:49 PM10/28/2020 7:55:49 PMType    Name    Media Type    File Size    Modified ITC_CrossOver_before_Copy_M    Medium 28 KB 10/28/2020 3:55 PM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7DA1442C-F0F8-43B2-9FD4-4D84902CCDFE}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
231839608Pretty in pink, the enzyme histone deacetylase (HDA6) stands out against a background of blue-tinted DNA in the nucleus of an <i>Arabidopsis</i> plant cell. Here, HDA6 concentrates in the nucleolus (top center), where ribosomal RNA genes reside. The enzyme silences the ribosomal RNA genes from one parent while those from the other parent remain active. This chromosome-specific silencing of ribosomal RNA genes is an unusual phenomenon observed in hybrid plants. Featured in the June 20, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-06-20/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 1:20:57 PM10/29/2020 1:20:57 PMType    Name    Media Type    File Size    Modified 2318_gene_S    Low 59 KB 3/29/2019 1:50 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{9AF8AC6D-4C9B-4230-A633-C6B5C804DB6C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
232939630At the root tips of the mustard plant <i>Arabidopsis thaliana</i> (red), two proteins work together to control the uptake of water and nutrients. When the cell division-promoting protein called Short-root moves from the center of the tip outward, it triggers the production of another protein (green) that confines Short-root to the nutrient-filtering endodermis. The mechanism sheds light on how genes and proteins interact in a model organism and also could inform the engineering of plants. Featured in the May 16, 2007, issue of <a href=http://publications.nigms.nih.gov/biobeat/07-05-16/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 2:14:03 PM10/29/2020 2:14:03 PMType    Name    Media Type    File Size    Modified PlantingRoots_L    Low 5 KB 6/3/2016 3:08 PM aamishral2 (NIH/NIGMS) [C The mechanism sheds light on how genes STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F8DEE475-B52B-46B2-97B6-884AD5DA433A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
233039631Like a watch wrapped around a wrist, a special enzyme encircles the double helix to repair a broken strand of DNA. Without molecules that can mend such breaks, cells can malfunction, die, or become cancerous. Featured in the November 21, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-11-21/#1 target="_blank"><em>Biomedical Beat</em></a>. Related to image <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=561">3493</a>10/29/2020 2:16:53 PM10/29/2020 2:16:53 PMType    Name    Media Type    File Size    Modified GDB--DNA_unwinding_recolored_medium_resolution_    Medium 185 KB 6/3/2016 3:08 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7570FB61-EFD0-4B1B-B181-74BE0D6AAB1B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
241739753This fruit fly expresses green fluorescent protein (GFP) in the same pattern as the period gene, a gene that regulates circadian rhythm and is expressed in all sensory neurons on the surface of the fly.8/6/2020 7:51:34 PM8/6/2020 7:51:34 PMType    Name    Media Type    File Size    Modified FlybyNight1_S    Low 11 KB 9/7/2016 5:33 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{03C5A6E6-05E4-4B1A-884E-53940CDDCD3D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
241839754This delicate, birdlike projection is an immature seed of the <i>Arabidopsis</i> plant. The part in blue shows the cell that gives rise to the endosperm, the tissue that nourishes the embryo. The cell is expressing only the maternal copy of a gene called MEDEA. This phenomenon, in which the activity of a gene can depend on the parent that contributed it, is called genetic imprinting. In <i>Arabidopsis</i>, the maternal copy of MEDEA makes a protein that keeps the paternal copy silent and reduces the size of the endosperm. In flowering plants and mammals, this sort of genetic imprinting is thought to be a way for the mother to protect herself by limiting the resources she gives to any one embryo. Featured in the May 16, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-05-16/#1 target="_blank"><em>Biomedical Beat</em></a>.8/17/2020 7:59:57 PM8/17/2020 7:59:57 PMType    Name    Media Type    File Size    Modified genetic_imprinting_T    Thumbnail 4 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C In flowering plants and mammals, this sort of genetic imprinting is thought to be a way for STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{755171FE-A0AC-4D55-8F76-BC6554F6076A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
242639758The structure of a gene-regulating zinc finger protein bound to DNA.8/17/2020 9:31:43 PM8/17/2020 9:31:43 PMType    Name    Media Type    File Size    Modified DesignedZF    High 595 KB 6/3/2016 3:10 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{05B06D12-30DC-46F0-97A0-41AAFF3B328B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
242939761The cytoskeleton (green) and DNA (purple) are highlighed in these cells by immunofluorescence.8/17/2020 9:36:09 PM8/17/2020 9:36:09 PMType    Name    Media Type    File Size    Modified Wittmann2_M    Medium 284 KB 9/7/2016 3:05 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3A889D00-8849-4CED-A940-48E94DD31348}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
244339784This map paints a colorful portrait of human genetic variation around the world. Researchers analyzed the DNA of 485 people and tinted the genetic types in different colors to produce one of the most detailed maps of its kind ever made. The map shows that genetic variation decreases with increasing distance from Africa, which supports the idea that humans originated in Africa, spread to the Middle East, then to Asia and Europe, and finally to the Americas. The data also offers a rich resource that scientists could use to pinpoint the genetic basis of diseases prevalent in diverse populations. Featured in the March 19, 2008, issue of <a href=http://publications.nigms.nih.gov/biobeat/08-03-19/index.html target="_blank"><em>Biomedical Beat</em></a>.8/19/2020 2:47:57 PM8/19/2020 2:47:57 PMType    Name    Media Type    File Size    Modified Researchers analyzed the DNA of 485 people and tinted the genetic types in different colors to produce one of the most detailed maps of its STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{65A6E7D0-EABC-412A-9154-D7109715B67E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
245539790A team of chemists and physicists used nanotechnology and DNA's ability to self-assemble with matching RNA to create a new kind of chip for measuring gene activity. When RNA of a gene of interest binds to a DNA tile (gold squares), it creates a raised surface (white areas) that can be detected by a powerful microscope. This nanochip approach offers manufacturing and usage advantages over existing gene chips and is a key step toward detecting gene activity in a single cell. Featured in the February 20, 2008, issue of <a href=http://publications.nigms.nih.gov/biobeat/08-02-20/index.html#1 target="_blank"><em>Biomedical Beat</em></a>.8/20/2020 5:51:20 PM8/20/2020 5:51:20 PMType    Name    Media Type    File Size    Modified 2455_Gold_gene_S    Low 127 KB 3/29/2019 11:27 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{1D011269-3AA9-44C4-8D58-702C27B5F5B6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
247439794Analysis of 68 million-year-old collagen molecule fragments preserved in a <i>T. rex</i> femur confirmed what paleontologists have said for decades: Dinosaurs are close relatives of chickens, ostriches, and to a lesser extent, alligators. A Harvard University research team, including NIGMS-supported postdoctoral research fellow Chris Organ, used sophisticated statistical and computational tools to compare the ancient protein to ones from 21 living species. Because evolutionary processes produce similarities across species, the methods and results may help illuminate other areas of the evolutionary tree. Featured in the May 21, 2008 <a href=http://publications.nigms.nih.gov/biobeat/08-05-21/index.html#3 target="_blank"><i>Biomedical Beat</i></a>.8/21/2020 9:14:58 PM8/21/2020 9:14:58 PMType    Name    Media Type    File Size    Modified 2474_evolutionary_tree_S    Low 54 KB 3/12/2019 11:54 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{5759E0B6-2126-45A6-A95C-0758FC271B96}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
247539795This microscopic image shows a chromatin fiber--a DNA molecule bound to naturally occurring proteins.8/21/2020 9:18:27 PM8/21/2020 9:18:27 PMType    Name    Media Type    File Size    Modified fiberinset_M    Medium 37 KB 6/3/2016 3:11 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7EACD560-633F-4985-82BC-9B2BA13A154E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
248339796This image represents the structure of TrpRS, a novel member of the tryptophanyl tRNA-synthetase family of enzymes. By helping to link the amino acid tryptophan to a tRNA molecule, TrpRS primes the amino acid for use in protein synthesis. A cluster of iron and sulfur atoms (orange and red spheres) was unexpectedly found in the anti-codon domain, a key part of the molecule, and appears to be critical for the function of the enzyme. TrpRS was discovered in Thermotoga maritima, a rod-shaped bacterium that flourishes in high temperatures. Credit: Joint Center for Structural Genomics9/18/2020 5:01:23 PM9/18/2020 5:01:23 PMType    Name    Media Type    File Size    Modified TrpRS_S    Low 155 KB 8/24/2016 3:00 PM Varkala, Venkat (NIH/NIGMS) [C This image represents the structure of STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{546A5303-9DBB-4FE5-9A6A-E4A616B84B22}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
248439797NIGMS-funded researchers led by Roger Kornberg solved the structure of RNA polymerase II. This is the enzyme in mammalian cells that catalyzes the transcription of DNA into messenger RNA, the molecule that in turn dictates the order of amino acids in proteins. For his work on the mechanisms of mammalian transcription, Kornberg received the Nobel Prize in Chemistry in 2006.9/18/2020 5:05:13 PM9/18/2020 5:05:13 PMType    Name    Media Type    File Size    Modified RNA_pol_II_thumb    Thumbnail 5 KB 6/3/2016 3:12 PM aamishral2 (NIH/NIGMS) [C David Bushnell (bushnell@stanford.edu) gave credit line and said: "You have STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{2A10BFFD-1037-418C-890C-8D7FB32E4ED7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
250939815Nucleotides in DNA are copied into RNA, where they are read three at a time to encode the amino acids in a protein. Many parts of a protein fold as the amino acids are strung together. See image 2510 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.2/16/2021 10:54:10 PM2/16/2021 10:54:10 PMType    Name    Media Type    File Size    Modified The_Genetic_Code_S    Low 20 KB 7/27/2016 11:34 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{3705D241-4A22-4929-ADC4-2EBEA5C0FFA6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
251039816The genetic code in DNA is transcribed into RNA, which is translated into proteins with specific sequences. During transcription, nucleotides in DNA are copied into RNA, where they are read three at a time to encode the amino acids in a protein. Many parts of a protein fold as the amino acids are strung together. See image 2509 for an unlabeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.2/16/2021 10:55:59 PM2/16/2021 10:55:59 PMType    Name    Media Type    File Size    Modified The_Genetic_Code_with_labels_M    Medium 84 KB 7/27/2016 11:33 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{4B5D22A1-CBB2-457C-928D-C7364B01FC4B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
251339823HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2514">2514</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2515">2515</a> for labeled versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:26:31 PM9/25/2020 4:26:31 PMType    Name    Media Type    File Size    Modified 2513thumb    Thumbnail 44 KB 6/3/2016 3:12 PM aamishral2 (NIH/NIGMS) [C HIV is a retrovirus, a type of virus STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C07EF89B-BA3A-4BD2-979B-95B3B2A80BF9}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
251439831HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2513">2513</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2515">2515</a> for other versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:29:40 PM9/25/2020 4:29:40 PMType    Name    Media Type    File Size    Modified 2514_Life_of_an_AIDS_Virus_with_labels_T    Thumbnail 117 KB 4/19/2019 12:29 PM Constantinides, Stephen (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7C26D3D2-FF70-420C-A0BC-1E2725806E59}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
251539834HIV is a retrovirus, a type of virus that carries its genetic material not as DNA but as RNA. Long before anyone had heard of HIV, researchers in labs all over the world studied retroviruses, tracing out their life cycle and identifying the key proteins the viruses use to infect cells. When HIV was identified as a retrovirus, these studies gave AIDS researchers an immediate jump-start. The previously identified viral proteins became initial drug targets. See images <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2513">2513</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2514">2514</a> for other versions of this illustration. Featured in <a href=http://publications.nigms.nih.gov/structlife/ target="_blank"><i>The Structures of Life</i></a>.9/25/2020 4:31:12 PM9/25/2020 4:31:12 PMType    Name    Media Type    File Size    Modified 2515_Life_of_an_AIDS_Virus_with_labels_and_stages_T    Thumbnail 128 KB 4/19/2019 12:30 PM Constantinides STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{E2EE0E54-49B2-4B79-BBC9-C7F4E1589956}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
253939912The long, stringy DNA that makes up genes is spooled within chromosomes inside the nucleus of a cell. (Note that a gene would actually be a much longer stretch of DNA than what is shown here.) See image 2540 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/9/2020 4:50:10 PM10/9/2020 4:50:10 PMType    Name    Media Type    File Size    Modified Chromosome_inside_Nucleus_S    Low 52 KB 9/7/2016 11:58 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7EA533B3-3BCA-4F3B-85EF-5E696DF3853F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254039913The long, stringy DNA that makes up genes is spooled within chromosomes inside the nucleus of a cell. (Note that a gene would actually be a much longer stretch of DNA than what is shown here.) Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/9/2020 4:51:22 PM10/9/2020 4:51:22 PMType    Name    Media Type    File Size    Modified Chromosome_inside_Nucleus_with_labels_S    Low 55 KB 9/7/2016 12:00 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{7D7E82F3-ECFE-436C-A8DD-0FC599388E63}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254139914DNA consists of two long, twisted chains made up of nucleotides. Each nucleotide contains one base, one phosphate molecule, and the sugar molecule deoxyribose. The bases in DNA nucleotides are adenine, thymine, cytosine, and guanine. See image 2542 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 4:08:27 PM10/16/2020 4:08:27 PMType    Name    Media Type    File Size    Modified Nucleotides_S    Low 63 KB 8/24/2016 3:55 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{0968D0F4-3202-4345-AA11-D0A735FCEFB7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254239915DNA consists of two long, twisted chains made up of nucleotides. Each nucleotide contains one base, one phosphate molecule, and the sugar molecule deoxyribose. The bases in DNA nucleotides are adenine, thymine, cytosine, and guanine. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 4:10:00 PM10/16/2020 4:10:00 PMType    Name    Media Type    File Size    Modified Nucleotides_with_labels_S    Low 69 KB 8/24/2016 5:05 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{D1C5A0E0-9E8D-476E-BB68-F21AA185C7FA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254339918During DNA replication, each strand of the original molecule acts as a template for the synthesis of a new, complementary DNA strand. See image 2544 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 4:57:47 PM10/16/2020 4:57:47 PMType    Name    Media Type    File Size    Modified DNA_Replication_S    Low 86 KB 7/28/2016 4:12 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{191DE30D-8C6F-437B-9B79-D953A32EDA5A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254439922During DNA replication, each strand of the original molecule acts as a template for the synthesis of a new, complementary DNA strand. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:02:41 PM10/16/2020 5:02:41 PMType    Name    Media Type    File Size    Modified DNA_Replication_with_labels_S    Low 91 KB 7/28/2016 4:14 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{78EF997D-F0BC-4181-8051-F46D8EE2F0BF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254539925Meiosis is the process whereby a cell reduces its chromosomes from diploid to haploid in creating eggs or sperm. See image 2546 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:04:11 PM10/16/2020 5:04:11 PMType    Name    Media Type    File Size    Modified 2545thumb    Thumbnail 35 KB 6/3/2016 3:13 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{73F4CAF1-AABE-4FF6-A46E-D410D63F5417}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254639930Meiosis is the process whereby a cell reduces its chromosomes from diploid to haploid in creating eggs or sperm. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:05:04 PM10/16/2020 5:05:04 PMType    Name    Media Type    File Size    Modified Meiosis_with_labels_M    Medium 237 KB 6/3/2016 3:13 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{B2BF9925-C8E0-4844-A56B-BF8C2147EAAF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254739932DNA encodes RNA, which encodes protein. DNA is transcribed to make messenger RNA (mRNA). The mRNA sequence (dark red strand) is complementary to the DNA sequence (blue strand). On ribosomes, transfer RNA (tRNA) reads three codons at a time in mRNA to bring together the amino acids that link up to make a protein. See image 2548 for a labeled version of this illustration and 2549 for a labeled and numbered version. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:07:56 PM10/16/2020 5:07:56 PMType    Name    Media Type    File Size    Modified Translation_M    Medium 97 KB 7/27/2016 11:48 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{D4FAF36B-B226-4DED-B039-62F3F525D185}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254839933DNA encodes RNA, which encodes protein. DNA is transcribed to make messenger RNA (mRNA). The mRNA sequence (dark red strand) is complementary to the DNA sequence (blue strand). On ribosomes, transfer RNA (tRNA) reads three codons at a time in mRNA to bring together the amino acids that link up to make a protein. See image 2549 for a numbered version of this illustration and 2547 for an unlabeled version. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:08:22 PM10/16/2020 5:08:22 PMType    Name    Media Type    File Size    Modified Translation_with_labels_M    Medium 114 KB 7/27/2016 11:46 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{AC34DAC1-7C84-40DD-B5EE-A99A094BF4F6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
254939934DNA encodes RNA, which encodes protein. DNA is transcribed to make messenger RNA (mRNA). The mRNA sequence (dark red strand) is complementary to the DNA sequence (blue strand). On ribosomes, transfer RNA (tRNA) reads three codons at a time in mRNA to bring together the amino acids that link up to make a protein. See image 2548 for a version of this illustration that isn't numbered and 2547 for a an entirely unlabeled version. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:09:17 PM10/16/2020 5:09:17 PMType    Name    Media Type    File Size    Modified Translation_with_labels_and_stages_M    Medium 115 KB 7/27/2016 11:45 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{F31244A1-27B7-404B-8A4E-3E8E9AEE63E7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
255039935Genes are often interrupted by stretches of DNA (introns, blue) that do not contain instructions for making a protein. The DNA segments that do contain protein-making instructions are known as exons (green). See image 2551 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:11:54 PM10/16/2020 5:11:54 PMType    Name    Media Type    File Size    Modified Introns_S    Low 41 KB 8/25/2016 5:46 PM Varkala, Venkat (NIH/NIGMS) [C Genes are often interrupted by stretches of DNA (introns, blue) that do not STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{C71774E5-1FCA-47FE-B54C-DB4B75B27384}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
255139936Genes are often interrupted by stretches of DNA (introns, blue) that do not contain instructions for making a protein. The DNA segments that do contain protein-making instructions are known as exons (green). Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/16/2020 5:12:23 PM10/16/2020 5:12:23 PMType    Name    Media Type    File Size    Modified Introns_with_labels_S    Low 49 KB 8/25/2016 5:48 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{2B860C09-0CE0-4F56-91E7-DF5B44EB2A6D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
255239937Arranging exons in different patterns, called alternative splicing, enables cells to make different proteins from a single gene. See image 2553 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 5:23:14 PM10/23/2020 5:23:14 PMType    Name    Media Type    File Size    Modified Alternative_Splicing_S    Low 42 KB 8/25/2016 5:50 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{476C387D-344E-4357-BAC4-F2CA9D225981}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
255339938Arranging exons in different patterns, called alternative splicing, enables cells to make different proteins from a single gene. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 5:24:23 PM10/23/2020 5:24:23 PMType    Name    Media Type    File Size    Modified Alternative_Splicing_with_labels_S    Low 48 KB 8/25/2016 5:53 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{316509E3-8F9C-4A42-B17E-9024C0A51F6D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
255439940Ribonucleic acid (RNA) has a sugar-phosphate backbone and the bases adenine (A), cytosine (C), guanine (G), and uracil (U). See image 2554 for a labeled version of this illustration. Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 7:01:32 PM10/23/2020 7:01:32 PMType    Name    Media Type    File Size    Modified 2554_RNA_S    Low 97 KB 3/29/2019 11:20 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{53E4AF8E-ED64-4744-90A7-3C71D80809DF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
255539941Ribonucleic acid (RNA) has a sugar-phosphate backbone and the bases adenine (A), cytosine (C), guanine (G), and uracil (U). Featured in <a href=http://publications.nigms.nih.gov/thenewgenetics/ target="_blank"><i>The New Genetics</i></a>.10/23/2020 7:02:18 PM10/23/2020 7:02:18 PMType    Name    Media Type    File Size    Modified 2555_RNA_with_T    Thumbnail 110 KB 3/29/2019 11:20 AM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx0https://images.nigms.nih.govhtmlTruehttps://images.nigms.nih.gov{A42C6CC8-6E99-4F4F-A1B1-D72DEB4B23E1}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131