Search Results

 

 

10472995Stereo triplet of a sea urchin embryo stained to reveal actin filaments (orange) and microtubules (blue). This image is part of a series of images: <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1048">image 1048</a> , <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1049">image 1049</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1050">image 1050</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1051">image 1051</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1052">image 1052</a>.8/14/2020 5:54:53 PM8/14/2020 5:54:53 PMType    Name    Media Type    File Size    Modified triplet1_S    Low 10 KB 9/8/2016 2:22 PM Varkala, Venkat (NIH/NIGMS) [C Stereo triplet of a sea urchin embryo STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx930https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{B60A7EDB-17C6-492C-975B-DCFB1E79CD14}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
10492997Stereo triplet of a sea urchin embryo stained to reveal actin filaments (orange) and microtubules (blue). This image is part of a series of images: <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1047">image 1047</a> , <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1048">image 1048</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1050">image 1050</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1051">image 1051</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=1052">image 1052</a>.8/14/2020 6:02:18 PM8/14/2020 6:02:18 PMType    Name    Media Type    File Size    Modified triplet3_S    Low 8 KB 9/8/2016 2:18 PM Varkala, Venkat (NIH/NIGMS) [C Stereo triplet of a sea urchin embryo STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1150https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{BB262863-B1A6-437D-B271-995AA6704827}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
10913000Glial cells (stained green) in a fruit fly developing embryo have survived thanks to a signaling pathway initiated by neighboring nerve cells (stained red).8/27/2020 8:56:25 PM8/27/2020 8:56:25 PMType    Name    Media Type    File Size    Modified NIH_picHR_S    Low 54 KB 8/25/2016 5:29 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1050https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{AB4185D1-7391-479E-AAB7-054DDB7179F7}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
12913009Sensory organs have cells equipped for detecting signals from the environment, such as odors. Receptors in the membranes of nerve cells in the nose bind to odor molecules, triggering a cascade of chemical reactions tranferred by G proteins into the cytoplasm. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 7:26:43 PM10/28/2020 7:26:43 PMType    Name    Media Type    File Size    Modified ITC_Olf_layout_copy_M    Medium 101 KB 10/28/2020 3:25 PM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{59382CB1-C3D0-4E54-8EDE-4D63F420D8B5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
23093015As an egg cell develops, a process called polarization controls what parts ultimately become the embryo's head and tail. This picture shows an egg of the fruit fly <i>Drosophila</i>. Red and green mark two types of signaling proteins involved in polarization. Disrupting these signals can scramble the body plan of the embryo, leading to severe developmental disorders. Featured in the September 19, 2006, issue of <a href=http://publications.nigms.nih.gov/biobeat/06-09-19/#1 target="_blank"><em>Biomedical Beat</em></a>.10/29/2020 12:54:35 PM10/29/2020 12:54:35 PMType    Name    Media Type    File Size    Modified 2309_cell_polarity_S    Low 49 KB 3/29/2019 1:54 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1650https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F5BC0800-555F-4CF8-82AB-5860BD0D261E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
24283042Actin (purple), microtubules (yellow), and nuclei (green) are labeled in these cells by immunofluorescence. This image won first place in the Nikon 2003 Small World photo competition.8/17/2020 9:33:48 PM8/17/2020 9:33:48 PMType    Name    Media Type    File Size    Modified Wittmann1_S    Low 88 KB 9/7/2016 3:02 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1350https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{7B30D101-F2A2-4554-87B0-71C2FC1D3774}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
10163061A light microscope image of a cell from the endosperm of an African globe lily (<i>Scadoxus katherinae</i>). This is one frame of a time-lapse sequence that shows cell division in action. The lily is considered a good organism for studying cell division because its chromosomes are much thicker and easier to see than human ones. Staining shows microtubules in red and chromosomes in blue. Here, condensed chromosomes are clearly visible and are starting to line up.5/9/2022 1:46:20 PM5/9/2022 1:46:20 PMType    Name    Media Type    File Size    Modified lilymit6_S    Low 13 KB 9/8/2016 2:35 PM Varkala, Venkat (NIH/NIGMS) [C Here, condensed chromosomes are clearly visible and are starting to line up STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1350https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{AC000F80-45A5-4619-A533-FA820938185C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
12783063Two models for how material passes through the Golgi apparatus: the vesicular shuttle model and the cisternae maturation model. You can see animations of the two different models at <a href="http://publications.nigms.nih.gov/insidethecell/extras/" target="_blank">http://publications.nigms.nih.gov/insidethecell/extras/</a>. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 4:37:04 PM10/28/2020 4:37:04 PMType    Name    Media Type    File Size    Modified ITC_GolgiTheories_S    Low 69 KB 8/24/2016 5:17 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{8338FE7B-DE3A-4BB1-9AD3-842F7470380D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
12803064Cells function within organs and tissues, such as the lungs, heart, intestines, and kidney. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 4:39:12 PM10/28/2020 4:39:12 PMType    Name    Media Type    File Size    Modified ITC_TorsoTubesQuarto_M    Medium 215 KB 6/3/2016 2:51 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{9C49CA4C-B670-4150-91DE-0D5C47220BA5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
13383072Nerve cells have long, invisibly thin fibers that carry electrical impulses throughout the body. Some of these fibers extend about 3 feet from the spinal cord to the toes. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 8:33:07 PM10/28/2020 8:33:07 PMType    Name    Media Type    File Size    Modified ITC_Neuron_lg_Copy_M    Medium 273 KB 6/3/2016 2:52 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1030https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{826D8129-3DA0-4655-B650-0B94F815520C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
25233116The plasma membrane is a cell's protective barrier Featured in <a href=http://publications.nigms.nih.gov/chemhealth/ target="_blank"><i>The Chemistry of Health</i></a>.3/4/2022 8:02:56 PM3/4/2022 8:02:56 PMType    Name    Media Type    File Size    Modified Plasma_Membrane_S    Low 81 KB 8/24/2016 3:47 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1230https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{B0AD4B41-3B4D-41DE-A541-77D481EAC9FD}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
12723129The three fibers of the cytoskeleton--microtubules in blue, intermediate filaments in red, and actin in green--play countless roles in the cell. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 4:14:44 PM10/28/2020 4:14:44 PMType    Name    Media Type    File Size    Modified ITC_Cytoskeleton_S    Low 144 KB 8/24/2016 3:18 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1540https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E37185A4-4561-456C-AC76-3A1F352FA533}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
12413194<i>Borrelia burgdorferi</i> is a spirochete, a class of long, slender bacteria that typically take on a coiled shape. Infection with this bacterium causes Lyme disease.3/13/2023 7:26:43 PM3/13/2023 7:26:43 PMType    Name    Media Type    File Size    Modified lyme4-neg_M    Medium 150 KB 10/28/2020 11:56 AM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1930https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{2477B116-D2B2-4218-8D24-A227A85CC969}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
12513197Colorized scanning electron micrographs progressively zoom in on the eye of a crab larva. In the higher-resolution frames, bacteria are visible on the eye.3/13/2023 7:24:39 PM3/13/2023 7:24:39 PMType    Name    Media Type    File Size    Modified crablarva-bacteria-eye_M    Medium 1262 KB 6/3/2016 2:50 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx2530https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{81E0FF0A-8C2F-4F9C-BF4E-CE157CFB3ED4}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
13133201Cells keep time to know when to retire. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 7:49:32 PM10/28/2020 7:49:32 PMType    Name    Media Type    File Size    Modified ITC_Clock_Copy_M    Medium 37 KB 10/28/2020 3:49 PM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx930https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{70BFE1CD-4BA3-4A73-9846-5F9A5E3AC122}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
13283205A cell in anaphase during mitosis: Chromosomes separate into two genetically identical groups and move to opposite ends of the spindle. Mitosis is responsible for growth and development, as well as for replacing injured or worn out cells throughout the body. For simplicity, mitosis is illustrated here with only six chromosomes. Appears in the NIGMS booklet <a href="http://publications.nigms.nih.gov/insidethecell/" target="_blank"><i>Inside the Cell</i></a>.10/28/2020 8:03:57 PM10/28/2020 8:03:57 PMType    Name    Media Type    File Size    Modified ITC_Mito_ana_Copy_M    Medium 42 KB 10/28/2020 4:02 PM McCulley, Jennifer (NIH/NIDCD) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx930https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{82BCCF0D-B1FE-4EB0-A9EF-E369AFB43F37}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
24403236<i>Hydra magnipapillata</i> is an invertebrate animal used as a model organism to study developmental questions, for example the formation of the body axis.8/19/2020 2:54:54 PM8/19/2020 2:54:54 PMType    Name    Media Type    File Size    Modified D20_2927-2    High 1343 KB 6/3/2016 3:11 PM aamishral2 (NIH/NIGMS) [C I sent the images for that purpose STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1230https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{81E5497C-2A45-458C-9236-23A11648E56E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
27993278Force vectors computed from actin cytoskeleton flow. This is an example of NIH-supported research on single cell analysis. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2798">image 2798</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2800">image 2800</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2801">image 2801</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2802">image 2802</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2803">image 2803</a>.9/11/2020 4:23:33 PM9/11/2020 4:23:33 PMType    Name    Media Type    File Size    Modified nih11IntracellularForces_S    Low 92 KB 8/24/2016 3:41 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{3D55FE55-96A4-40D3-8C11-D9AADE15FC17}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
28023281A rendering of an activity biosensor image overlaid with a cell-centered frame of reference used for image analysis of signal transduction. This is an example of NIH-supported research on single cell analysis. Related to <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2798">image 2798</a> , <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2799">image 2799</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2800">image 2800</a>, <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2801">image 2801</a> and <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=2803">image 2803</a>.9/11/2020 4:25:46 PM9/11/2020 4:25:46 PMType    Name    Media Type    File Size    Modified nih11BiosensorsArtistic_L    Low 133 KB 6/3/2016 3:18 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{74662892-4E9F-4C75-A089-54EB98B3D0BA}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
28073283Confocal image showing high levels of the protein vimentin (white) at the edge zone of a quail embryo. Cell nuclei are labeled green. More specifically, this high-magnification (60X) image shows vimentin immunofluorescence in the edge zone (top of image) and inner zone (bottom of image) of a Stage 4 quail blastoderm. Vimentin expression (white) is shown merged with Sytox nuclear labeling (green) at the edge of the blastoderm. A thick vimentin filament runs circumferentially (parallel to the direction of the edge) that appears to delineate the transition between the edge zone and interior zone. Also shown are dense vimentin clusters or foci, which typically appear to be closely associated with edge cell nuclei. This image appeared in a <a href=http://gtresearchnews.gatech.edu/quail-embryo/ target="_blank">March 2011 Georgia Tech news release</a>. An NIGMS grant to Professor Garcia was used to purchase the confocal microscope that collected this image. Related entries: 2808 and 2809.12/22/2020 4:28:11 PM12/22/2020 4:28:11 PMType    Name    Media Type    File Size    Modified vimentin_hires    High 403 KB 6/3/2016 3:18 PM aamishral2 (NIH/NIGMS) [C Also shown are dense vimentin clusters or STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{ECFC258C-6BEC-4C4F-9998-00CB33ACD7D8}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
26063322The human skin cells pictured contain genetic modifications that make them pluripotent, essentially equivalent to embryonic stem cells. A scientific team from the University of Wisconsin-Madison including researchers Junying Yu, James Thomson, and their colleagues produced the transformation by introducing a set of four genes into human fibroblasts, skin cells that are easy to obtain and grow in culture.10/30/2020 7:29:57 PM10/30/2020 7:29:57 PMType    Name    Media Type    File Size    Modified skin_cell_pluripotent07_1.2_M    Medium 364 KB 7/27/2016 11:42 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F5E9431B-2DE0-44AA-BAE3-869CECE1EF36}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
27443332When a molecule arrives at a cell's outer membrane, the membrane creates a pouch around the molecule that protrudes inward. Directed by a protein called dynamin, the pouch then gets pinched off to form a vesicle that carries the molecule to the right place inside the cell. To better understand how dynamin performs its vital pouch-pinching role, researchers determined its structure. Based on the structure, they proposed that a dynamin "collar" at the pouch's base twists ever tighter until the vesicle pops free. Because cells absorb many drugs through vesicles, the discovery could lead to new drug delivery methods. Featured in the May 19, 2010, issue of <a href=http://publications.nigms.nih.gov/biobeat/10-05-19/index.html#3 target="_blank"><em>Biomedical Beat</em></a>.8/18/2020 7:28:26 PM8/18/2020 7:28:26 PMType    Name    Media Type    File Size    Modified 2744_dynamin_structure_thumbnail    Thumbnail 53 KB 3/12/2019 12:12 PM Constantinides, Stephen (NIH/NIGMS STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1240https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{41793EF1-4333-4320-94D3-CE4E89A32605}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
32743342This fluorescent microscope image shows human ES cells whose nuclei are stained green. Blue staining shows the surrounding supportive feeder cells. Image and caption information courtesy of the California Institute for Regenerative Medicine. See related image 3275.12/22/2020 6:30:07 PM12/22/2020 6:30:07 PMType    Name    Media Type    File Size    Modified HumanEScells_S    Low 33 KB 9/7/2016 5:15 PM Varkala, Venkat (NIH/NIGMS) [C "In the credits for each image STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1330https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{06DF41FE-A8A9-466F-8807-E05C55BF3E71}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
32763344This image shows hundreds of human embryonic stem cells in various stages of differentiating into neurons. Some cells have become neurons (red), while others are still precursors of nerve cells (green). The yellow is an imaging artifact resulting wehn cells in both stages are on top of each other. Image and caption information courtesy of the California Institute for Regenerative Medicine.12/22/2020 7:13:24 PM12/22/2020 7:13:24 PMType    Name    Media Type    File Size    Modified HumanEScellsintoneurons_TH    Thumbnail 17 KB 2/22/2021 4:26 PM Dolan, Lauren (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{49917540-9D66-482F-9CAB-969B47A3DFBD}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
33343353It has been said that gastrulation is the most important event in a person's life. This part of early embryonic development transforms a simple ball of cells and begins to define cell fate and the body axis. In a study published in Science magazine in March 2012, NIGMS grantee Bob Goldstein and his research group studied how contractions of actomyosin filaments in C. elegans and Drosophila embryos lead to dramatic rearrangements of cell and embryonic structure. This research is described in detail in the following <a href=http://www.sciencemag.org/content/335/6073/1232.abstract target="_blank"> article</a>: "Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions." In these images, myosin (green) and plasma membrane (red) are highlighted at four timepoints in gastrulation in the roundworm C. elegans. The blue highlights in the top three frames show how cells are internalized, and the site of closure around the involuting cells is marked with an arrow in the last frame. See related image 3297.3/18/2022 4:17:40 PM3/18/2022 4:17:40 PMType    Name    Media Type    File Size    Modified 3334_Four_timepoints_in_gastrulation_S    Low 94 KB 3/29/2019 10:07 AM Constantinides, Stephen (NIH/NIGMS STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{1A2F782A-4872-4628-98F9-5A8C9E7D1034}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
27243392Like a pulsing blue shower, E. coli cells flash in synchrony. Genes inserted into each cell turn a fluorescent protein on and off at regular intervals. When enough cells grow in the colony, a phenomenon called quorum sensing allows them to switch from blinking independently to blinking in unison. Researchers can watch waves of light propagate across the colony. Adjusting the temperature, chemical composition or other conditions can change the frequency and amplitude of the waves. Because the blinks react to subtle changes in the environment, synchronized oscillators like this one could one day allow biologists to build cellular sensors that detect pollutants or help deliver drugs. This image was featured in the January 20, 2010 issue of <a href=http://publications.nigms.nih.gov/biobeat/10-01-20/index.html#1 target="_blank"><i>Biomedical Beat</i></a>.8/12/2020 3:48:40 PM8/12/2020 3:48:40 PMType    Name    Media Type    File Size    Modified Blinking_bacteria    High 2579 KB 6/3/2016 3:16 PM aamishral2 (NIH/NIGMS) [C This image was featured in the STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{8891B5D1-1100-45DB-9284-5FB986383B1E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
27023455A combo of protein structures determined experimentally and computationally shows us the complete metabolic network of a heat-loving bacterium.8/6/2020 4:36:05 PM8/6/2020 4:36:05 PMType    Name    Media Type    File Size    Modified 2702_Thermotoga_maritima_and_its_metabolic_network_T    Thumbnail 97 KB 3/29/2019 11:00 AM Constantinides STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1230https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{8BCB0A5C-8081-41B2-AEC1-62DCCD78EE99}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
27583463This photograph shows a magnified view of a <i>Drosophila melanogaster</i> pupa in cross section. Compare this normal pupa to one that lacks an important receptor, shown in image 2759.8/21/2020 7:26:54 PM8/21/2020 7:26:54 PMType    Name    Media Type    File Size    Modified Control_S    Low 16 KB 9/14/2016 11:26 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{790A2C6F-2A21-48D4-8215-1A3D8B97D2B6}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
27593464In the absence of the engulfment receptor Draper, salivary gland cells (light blue) persist in the thorax of a developing <i>Drosophila melanogaster</i> pupa. See image 2758 for a cross section of a normal pupa that does express Draper.8/21/2020 7:28:19 PM8/21/2020 7:28:19 PMType    Name    Media Type    File Size    Modified draper-mutant_S    Low 16 KB 9/14/2016 11:24 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{4A178706-B83E-481F-B939-8ACA0AB2C112}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
33873490Spinal nerves are part of the peripheral nervous system. They run within the spinal column to carry nerve signals to and from all parts of the body. The spinal nerves enable all the movements we do, from turning our heads to wiggling our toes, control the movements of our internal organs, such as the colon and the bladder, as well as allow us to feel touch and location of our limbs.12/23/2020 8:04:47 PM12/23/2020 8:04:47 PMType    Name    Media Type    File Size    Modified NCMIR_human_spinal_nerve_L    Low 30 KB 6/3/2016 3:27 PM aamishral2 (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1350https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{64E261D1-CBF3-4145-AB2D-8F5C90A18B68}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
35923512Watch a cell ripple toward a beam of light that turns on a movement-related protein.10/19/2020 6:08:59 AM10/19/2020 6:08:59 AMType    Name    Media Type    File Size    Modified 3592_Math_from_the_heart_T    Thumbnail 63 KB 3/28/2019 4:09 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{08777930-8779-4B3C-9C3F-1EC6276A9CE5}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36303519Of the three muscle fibers shown here, the one on the right and the one on the left are normal. The middle fiber is deficient a large protein called nebulin (blue). Nebulin plays a number of roles in the structure and function of muscles, and its absence is associated with certain neuromuscular disorders. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/22/2022 7:51:47 PM11/22/2022 7:51:47 PMType    Name    Media Type    File Size    Modified 9_3_Three_Muscle_Fibers-Pappas-CMYK_M    Medium 169 KB 11/23/2020 4:17 PM Walter, Taylor (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{38D2C226-B34A-4FDF-B1EE-395D86F299B0}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
57663544Anaphase is the critical step during mitosis when sister chromosomes are disjoined and directed to opposite spindle poles, ensuring equal distribution of the genome during cell division. In this image, one pair of sister chromosomes at the top was lost and failed to divide after chemical inhibition of polo-like kinase 1. This image depicts chromosomes (blue) separating away from the spindle mid-zone (red). Kinetochores (green) highlight impaired movement of some chromosomes away from the mid-zone or the failure of sister chromatid separation (top). Scientists are interested in detailing the signaling events that are disrupted to produce this effect. The image is a volume projection of multiple deconvolved z-planes acquired with a Nikon widefield fluorescence microscope. This image was chosen as a winner of the 2016 NIH-funded research image call. Related to <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3054">image 5765</a>. <Br><Br> The research that led to this image was funded by NIGMS.5/13/2022 12:51:55 PM5/13/2022 12:51:55 PMType    Name    Media Type    File Size    Modified 5766_26898997643_d4abe790bd_S    Low 55 KB 3/28/2019 3:21 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx940https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{3F87A832-F8F9-4A2F-87F6-CE4B5A92250A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
587235502/7/2022 3:43:55 PM2/7/2022 3:43:55 PMType    Name    Media Type    File Size    Modified retina_M    Medium 1815 KB 4/22/2017 12:14 PM Machalek, Alisa (NIH/NIAMS) [E STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx930https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{C7CD33E0-7131-4C93-A259-9A50E5AAB84E}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
58833557Composite image of beta-galactosidase showing how cryo-EM’s resolution has improved dramatically in recent years. Older images to the left, more recent to the right. Related to image <a href="https://images.nigms.nih.gov/Pages/DetailPage.aspx?imageID2=5882">5882</a>. NIH Director Francis Collins featured this on his blog on January 14, 2016. See<a href="https://directorsblog.nih.gov/2016/01/14/got-it-down-cold-cryo-electron-microscopy-named-method-of-the-year/"> Got It Down Cold: Cryo-Electron Microscopy Named Method of the Year </a>12/18/2020 9:52:10 PM12/18/2020 9:52:10 PMType    Name    Media Type    File Size    Modified BlueGold_BetaGalactosidase_beige_M    Medium 92 KB 5/11/2017 11:46 AM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{6E2F4831-F581-426A-832A-1DACE83D0D6A}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
37483600Dengue virus is a mosquito-borne illness that infects millions of people in the tropics and subtropics each year. Like many viruses, dengue is enclosed by a protective membrane. The proteins that span this membrane play an important role in the life cycle of the virus. Scientists used cryo-EM to determine the structure of a dengue virus at a 3.5-angstrom resolution to reveal how the membrane proteins undergo major structural changes as the virus matures and infects a host. For more on cryo-EM see the blog post <a href="https://biobeat.nigms.nih.gov/2016/02/cryo-electron-microscopy-reveals-molecules-in-ever-greater-detail/">Cryo-Electron Microscopy Reveals Molecules in Ever Greater Detail</a>. For a still image of the dengue virus surface structure, see <a href="https://imagesadminprod.nigms.nih.gov/index.cfm?event=viewDetail&imageID=3756">image 3756.<a>12/17/2020 5:44:50 PM12/17/2020 5:44:50 PMType    Name    Media Type    File Size    Modified 3748_dengue_thumbnail    Thumbnail 141 KB 3/12/2019 12:30 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{C1CE1840-548F-4D9E-B330-AE1522A52391}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
37543604Some nerve cells (neurons) in the brain keep track of the daily cycle. This time-keeping mechanism, called the circadian clock, is found in all animals including us. The circadian clock controls our daily activities such as sleep and wakefulness. Researchers are interested in finding the neuron circuits involved in this time keeping and how the information about daily time in the brain is relayed to the rest of the body. In this image of a brain of the fruit fly Drosophila, the time-of-day information flowing through the brain has been visualized by staining the neurons involved: clock neurons (shown in blue) function as "pacemakers" by communicating with neurons that produce a short protein called leucokinin (LK) (red), which, in turn, relays the time signal to other neurons, called LK-R neurons (green). This signaling cascade set in motion by the pacemaker neurons helps synchronize the fly's daily activity with the 24-hour cycle. To learn more about what scientist have found out about circadian pacemaker neurons in the fruit fly <a href="http://www.nyu.edu/about/news-publications/news/2016/02/29/biological-clocks-orchestrate-behavioral-rhythms-by-sending-signals-downstream.html">see this news release by New York University</a>. A study describing the discovery of the neuron circuits involved has been published in the journal <a href="http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4263.html"><i>Nature Neuroscience</i></a> This work was featured in the <i>Biomedical Beat</i> blog post <a href="https://biobeat.nigms.nih.gov/2016/03/cool-image-a-circadian-circuit/">Cool Image: A Circadian Circuit.</a>12/17/2020 6:17:16 PM12/17/2020 6:17:16 PMType    Name    Media Type    File Size    Modified Circadian circuit_Blau    High 2128 KB 8/26/2016 3:55 PM Varkala, Venkat (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1140https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{71D565F5-CDB6-4529-AD89-4239E8C19386}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
57563607Pigment cells are cells that give skin its color. In fishes and amphibians, like frogs and salamanders, pigment cells are responsible for the characteristic skin patterns that help these organisms to blend into their surroundings or attract mates. The pigment cells are derived from neural crest cells, which are cells originating from the neural tube in the early embryo. This image shows pigment cells from pearl danio, a relative of the popular laboratory animal zebrafish. Investigating pigment cell formation and migration in animals helps answer important fundamental questions about the factors that control pigmentation in the skin of animals, including humans. Related to images <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=2996">5754</a>, <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3000">5755</a>, <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3011">5757</a> and <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3016">5758.12/18/2020 4:53:41 PM12/18/2020 4:53:41 PMType    Name    Media Type    File Size    Modified parichy-02_M    Medium 67 KB 7/13/2016 5:57 PM Varkala, Venkat (NIH/NIGMS) [C I’d be happy to make some high STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{09E26DA0-9005-49C0-A268-3998B5DA6C97}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
58683619This image results from a research project to visualize which regions of the adult fruit fly (Drosophila) brain derive from each neural stem cell. First, researchers collected several thousand fruit fly larvae and fluorescently stained a random stem cell in the brain of each. The idea was to create a population of larvae in which each of the 100 or so neural stem cells was labeled at least once. When the larvae grew to adults, the researchers examined the flies’ brains using confocal microscopy. </br>With this technique, the part of a fly’s brain that derived from a single, labeled stem cell “lights up.” The scientists photographed each brain and digitally colorized its lit-up area. By combining thousands of such photos, they created a 3-dimensional, color-coded map that shows which part of the Drosophila brain comes from each of its ~100 neural stem cells. In other words, each colored region shows which neurons are the progeny or “clones” of a single stem cell. This work established a hierarchical structure as well as nomenclature for the neurons in the Drosophila brain. Further research will relate functions to structures of the brain. Related to image <a href="/Pages/DetailPage.aspx?imageID2=5838">5838</a> and video<a href="/Pages/DetailPage.aspx?imageID2=5843"> 5843</a>.5/13/2022 12:37:47 PM5/13/2022 12:37:47 PMType    Name    Media Type    File Size    Modified droso_x10_blk bg from Utah BTRR--Chris Johnson_ PI_M    Medium 813 KB 12/18/2020 4:02 PM Walter, Taylor (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1140https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{EFD1667C-BB60-4249-BF4D-7D58C39BE735}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6388362212/21/2020 5:16:51 PM12/21/2020 5:16:51 PMType    Name    Media Type    File Size    Modified E. coli_M    Medium 203 KB 3/13/2018 3:59 PM Constantinides, Stephen (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1930https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{52B9AB37-C0A9-4E84-9332-67CFB7D18183}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
638936232/3/2020 7:41:16 PM2/3/2020 7:41:16 PMType    Name    Media Type    File Size    Modified Red and white blood cells in lung_M    Medium 484 KB 3/13/2018 4:02 PM Constantinides, Stephen (NIH/NIGMS STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{80CC8DC3-7C67-40C7-A007-3A53BB871004}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
35563639Luciferase-based imaging enables visualization and quantification of internal organs and transplanted cells in live adult zebrafish. In this image, a cardiac muscle-restricted promoter drives firefly luciferase expression. Lateral (Top) and overhead views (Bottom) are shown.10/5/2020 5:20:22 AM10/5/2020 5:20:22 AMType    Name    Media Type    File Size    Modified Poss-zebrafish-01    High 416 KB 6/3/2016 3:31 PM aamishral2 (NIH/NIGMS) [C br>For imagery of the overhead STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1130https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{3D1F01B8-728A-4F3D-B381-CF2B50DEAA2C}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36163650The lubber grasshopper, found throughout the southern United States, is frequently used in biology classes to teach students about the respiratory system of insects. Unlike mammals, which have red blood cells that carry oxygen throughout the body, insects have breathing tubes that carry air through their exoskeleton directly to where it's needed. This image shows the breathing tubes embedded in the weblike sheath cells that cover developing egg chambers. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/28/2022 9:47:06 PM11/28/2022 9:47:06 PMType    Name    Media Type    File Size    Modified 10_3_grasshopper-ovary-Edwards-3000px    Other 39595 KB 10/25/2020 9:44 PM Harris, Donald (NIH/NIGMS) [C STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E134B4F1-837B-44F9-84B7-BA084A3E76DF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36173651This image shows a normal fibroblast, a type of cell that is common in connective tissue and frequently studied in research labs. This cell has a healthy skeleton composed of actin (red) and microtubles (green). Actin fibers act like muscles to create tension and microtubules act like bones to withstand compression. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/22/2022 9:18:45 PM11/22/2022 9:18:45 PMType    Name    Media Type    File Size    Modified 5_right_Cell_keep_their_shape_with_actin_and_microtubules    Other 39578 KB 10/25/2020 9:47 PM Harris STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{D856BBEC-A16B-4798-982B-454A9289AC04}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36503653A microtubule, part of the cell's skeleton, builds and deconstructs.2/4/2020 9:04:19 PM2/4/2020 9:04:19 PMType    Name    Media Type    File Size    Modified 3650_How_a_microtubule_builds_and_deconstructs_thumbnail    Thumbnail 66 KB 3/12/2019 12:26 PM STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx730https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{C5854A0E-0F91-4D29-ADAD-EE8194F9291B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
58383684This image results from a research project to visualize which regions of the adult fruit fly (Drosophila) brain derive from each neural stem cell. First, researchers collected several thousand fruit fly larvae and fluorescently stained a random stem cell in the brain of each. The idea was to create a population of larvae in which each of the 100 or so neural stem cells was labeled at least once. When the larvae grew to adults, the researchers examined the flies’ brains using confocal microscopy. With this technique, the part of a fly’s brain that derived from a single, labeled stem cell “lights up.” The scientists photographed each brain and digitally colorized its lit-up area. By combining thousands of such photos, they created a 3-dimensional, color-coded map that shows which part of the Drosophila brain comes from each of its ~100 neural stem cells. In other words, each colored region shows which neurons are the progeny or “clones” of a single stem cell. This work established a hierarchical structure as well as nomenclature for the neurons in the Drosophila brain. Further research will relate functions to structures of the brain. Related to image <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3808">5868</a> and video<a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=3749"> 5843</a> 5/13/2022 12:38:45 PM5/13/2022 12:38:45 PMType    Name    Media Type    File Size    Modified 5838_droso_x10_crop from Utah BTRR--Chris Johnson_S    Low 166 KB 3/28/2019 2:31 PM Constantinides, Stephen STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1240https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{E35C7327-EDA4-46DF-B3D4-A0F7CF02CCC0}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
6387369312/21/2020 5:16:04 PM12/21/2020 5:16:04 PMType    Name    Media Type    File Size    Modified Blood clot_M    Medium 557 KB 9/18/2019 2:02 PM Machalek, Alisa (NIH/NIAMS) [E STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx2250https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{569F0548-B89D-42E2-8313-CE93BB941D7D}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
34773698This image is a computer-generated model of the approximately 4.2 million atoms of the HIV capsid, the shell that contains the virus' genetic material. Scientists determined the exact structure of the capsid and the proteins that it's made of using a variety of imaging techniques and analyses. They then entered these data into a supercomputer that produced the atomic-level image of the capsid. This structural information could be used for developing drugs that target the capsid, possibly leading to more effective therapies11/14/2023 1:23:33 PM11/14/2023 1:23:33 PMType    Name    Media Type    File Size    Modified Capsid_M    Medium 77 KB 6/3/2016 3:30 PM aamishral2 (NIH/NIGMS) [C This structural information could be used for developing STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1840https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{4475C347-ACA7-4D71-B1A5-B70167940ACF}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
36003711A mouse's fat cells (red) are shown surrounded by a network of blood vessels (green). Fat cells store and release energy, protect organs and nerve tissues, insulate us from the cold and help us absorb important vitamins. This image is part of the Life: Magnified collection, which was displayed in the Gateway Gallery at Washington Dulles International Airport June 3, 2014, to January 21, 2015. To see all 46 images in this exhibit, go to https://www.nigms.nih.gov/education/life-magnified/Pages/default.aspx.11/22/2022 8:43:42 PM11/22/2022 8:43:42 PMType    Name    Media Type    File Size    Modified 7_right_Fat_cells_and_blood_vessel_34in_Malide_H    High 4848 KB 10/19/2020 3:10 AM Harris, Donald (NIH STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx1440https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{F5343960-E864-40C3-A794-C1F7F1C9CD4F}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131
37823736Each of the colored specs in this image is a cell on the surface of a fish scale. To better understand how wounds heal, scientists have inserted genes that make cells brightly glow in different colors into the skin cells of zebrafish, a fish often used in laboratory research. The colors enable the researchers to track each individual cell, for example, as it moves to the location of a cut or scrape over the course of several days. These technicolor fish endowed with glowing skin cells dubbed "skinbow" provide important insight into how tissues recover and regenerate after an injury. <Br><Br>For more information on skinbow fish, see the Biomedical Beat blog post <a href="https://biobeat.nigms.nih.gov/2016/04/visualizing-skin-regeneration-in-real-time/">Visualizing Skin Regeneration in Real Time</a> and <a href="http://today.duke.edu/2016/03/zebrafish">a press release from Duke University highlighting this research</a>. Related to <a href="https://imagesadminprod.nigms.nih.gov/Pages/DetailPage.aspx?imageID=717"> image 3783</a>.2/4/2020 3:21:30 PM2/4/2020 3:21:30 PMType    Name    Media Type    File Size    Modified 20160509-skinbow-fin-1_M    Medium 299 KB 6/3/2016 3:41 PM aamishral2 (NIH/NIGMS) [C Each of the colored specs in this image is a cell on STS_ListItem_DocumentLibraryhttps://images.nigms.nih.gov/PublicAssets/Forms/AllItems.aspx830https://images.nigms.nih.govhtmlTruehttps://imagesadmin.nigms.nih.gov{9F84C2FE-EA85-4A26-AADA-4915D6443B3B}Sharepoint.DocumentSet~sitecollection/_catalogs/masterpage/Display Templates/Search/Item_PublicAsset.js3131