Detail Page

  • 17001958665788685097912163842548917244PublicAssets/5770Cell division is an incredibly coordinated process. It not only ensures that the new cells formed during this event have a full set of chromosomes, but also that they are endowed with all the cellular materials, including proteins, lipids and small functional compartments called organelles, that are required for normal cell activity. This proper apportioning of essential cell ingredients helps each cell get off to a running start.<Br><Br> This image shows an electron microscopy (EM) thin section taken at 10,000x magnification of a dividing yeast cell over-expressing the protein ubiquitin, which is involved in protein degradation and recycling. The picture features mother and daughter endosome accumulations (small organelles with internal vesicles), a darkly stained vacuole and a dividing nucleus in close contact with a cadre of lipid droplets (unstained spherical bodies).&nbsp; Other dynamic events are also visible,&nbsp; such as spindle microtubules in the nucleus and endocytic pits at the plasma membrane. <Br><Br>These extensive details were revealed thanks to a preservation method involving high-pressure freezing, freeze-substitution and Lowicryl HM20 embedding.Matthew West and Greg Odorizzi, University of ColoradoMatthew West and Greg Odorizzi, University of ColoradoPhotograph

    Topic Tags:

    CellsGenesTools and Techniques

    EM of yeast cell division

    Cell division is an incredibly coordinated process. It not only ensures that the new cells formed during this event have a full set of chromosomes, but also that they are endowed with all the cellular materials, including proteins, lipids and small functional compartments called organelles, that are required for normal cell activity. This proper apportioning of essential cell ingredients helps each cell get off to a running start.

    This image shows an electron microscopy (EM) thin section taken at 10,000x magnification of a dividing yeast cell over-expressing the protein ubiquitin, which is involved in protein degradation and recycling. The picture features mother and daughter endosome accumulations (small organelles with internal vesicles), a darkly stained vacuole and a dividing nucleus in close contact with a cadre of lipid droplets (unstained spherical bodies).  Other dynamic events are also visible,  such as spindle microtubules in the nucleus and endocytic pits at the plasma membrane.

    These extensive details were revealed thanks to a preservation method involving high-pressure freezing, freeze-substitution and Lowicryl HM20 embedding.

    Source

    Matthew West and Greg Odorizzi, University of Colorado

    Credit Line

    Matthew West and Greg Odorizzi, University of Colorado

    Record Type

    Photograph

    ID

    5770

My Images/Videos